
CS486C – Senior Capstone Design in Computer Science
Project Description

Project Title: A Graphical Framework for Distributed Software Deployment

Sponsor Information:

Hélène Coullon, Assistant professor
STACK team
IMT Atlantique, Inria, France
helene.coullon@inria.fr

Frédéric Loulergue
School of Informatics Computing and Cyber Systems
Northern Arizona University
frederic.loulergue@nau.edu

Project Overview:

With the increasing popularity of heterogenous
distributed computing infrastructures, the
deployment and maintenance of complex
computing, storage and network infrastructures
continuously increases, leaving developers,
infrastructure administrators, scientists, and other
end-users to juggle between smart objects, small
devices, personal computers, clusters, private,
public or hybrid Clouds as well as future generations
of infrastructures such as Fog and Edge computing.
In parallel, the complexity of distributed software
deployed on such infrastructures continues to
increase; most distributed software is modular or
component-based, with possibly complex
communications, interactions and synchronizations
between each component.

Due to the complexity of distributed infrastructures, installation (deployment) and regular maintenance
(e.g. updates, fault management, and other elements of normal software lifecycles) becomes a complex
administrative task, composed of many steps and well-defined procedures. Several higher-level
frameworks have been developed to help automate these distributed software deployment schemes,
including Kubernetes and OpenStack (each specific to a particular type of virtualization), as well as a
variety of lower level administrative tools such as Puppet, Chef and Ansible. Among the great number of
deployment frameworks and tools currently available, however, none focuses on a critical point:
deployment time; specifically, the efficiency and scalability of deployment schemes. Without a stronger
focus on minimizing deployment time, future very large-scale infrastructures (e.g. Fog and Edge) and very
large-scale applications (e.g. smart-everything apps) cannot be handled.

In the STACK research team at Inria (France), project sponsor Helene Coullon works on Madeus, a
novel distributed software deployment model, as well as its Python implementation in a product called
MAD (Madeus Application Deployer). At SICCS, project sponsor Frederic Loulergue is interested in the
formal analysis of component-based software, and in particular, of Madeus assemblies.

The overall approach that Madeus uses to support more efficient deployment is to expose and leverage
opportunities for parallelism in the deployment process. Unfortunately, introducing parallelism also
introduces more complexity for the end-user/administrator wanting to deploy a distributed software

system: the user has to think about and understand the dependencies between the different tasks of its
deployment process, and has to explicitly code these dependencies in MAD. Obviously, this is much more
challenging that writing a traditional sequential sequence of deployment actions. To help visualize, create,
and maintain the complex parallelized deployment schemes that drive MAD (schemes are directed acyclic
graphs in MAD), a Graphical User Interface (GUI) would be highly useful, supporting direct visualization
of parallelized deployment tasks (e.g. in a time-based DAG). If successful, a graphical front-end for MAD
would dramatically increase MAD’s usability and make it much more accessible to the end-user
community.

This project aims to prototype a clean, highly-usable GUI front-end to the MAD system outlined above.
Specifically, the desired software product would likely consist of (at least) the following three parts:

1. A GUI to allow the graphical design of software deployment according to the Madeus model; the
design of the tool should be based on the Model-View-Controller (MVC) architectural pattern,

2. A tree-like data structure to represent Madeus assemblies, and a documented API to manipulate
it (Visitor pattern),

3. The framework should be extendable by plugins, and the provided plugins should be able to:
o Read/Write Madeus assemblies from/to files,
o Simulate the execution of Madeus assemblies,
o Launch MAD deployments and follow in real time their execution

4. If time permits, other plugins could be provided including:
o A plugin to generate images of Maedus assemblies (in pdf or/and png formats),
o A plugin to generate LaTeX (using the tikz packages) representation of Maedus

assemblies,
o More advanced verification plugins such as interactions with the Coq proof assistant.

The GUI code would likely leverage the Python-based MAD implementation under a GPL license, but
could also be implemented in a different language if the team’s preliminary investigations reveal
advantages in doing so. In any case, an early challenge in this project will be identifying appropriate
existing libraries for doing 2D graph layout, to use as a basis for the DAG-based deployment scheme
visualization.

MAD is available for free on an Inria GitLab repository. It is entirely documented under ReadTheDocs.
Tutorials and examples could also be found in the repository. It is asked to the student team to use those
same examples in the repository and documentation of the MAD-GUI.

Knowledge, skills, and expertise required for this project:

The team will need to have or acquire:

• Skill in development of GUIs, plus coding of such GUIs in the chosen implementation language.

• Basic knowledge of Python, to allow integration of the envisioned front-end with MAD.

• Interest in and basic knowledge of distributed software and Cloud Computing,

• Motivation and drive to develop an innovative contribution to the distributed software community.

Equipment Requirements:

• Appropriate development workstations, ideally based on Linux distribution (incl. MacOS)

• All other software tools and modules are anticipated to be open-source, or will be provided by the
client.

Software and other Deliverables:

Expected deliverables include:

• The software application as described above, deployed and tested successfully on a platform of
the client’s choosing. Must include a complete and clear User Manual for configuring and operating
the software.

• A strong as-built report, implemented as HTML-based online documentation, detailing the design
and implementation of the product in a complete, clear and professional manner. This document
should provide a strong basis for future development of the product.

• Complete professionally-documented codebase, delivered both as a repository in GitHub,
BitBucket, or some other version control repository; and as a physical archive on a USB drive.

	Project Overview:
	Knowledge, skills, and expertise required for this project:
	Equipment Requirements:
	Software and other Deliverables:

