REQUIREMENTS
ACQUISITION

Collaborators: Steve Jacobs, John Georgas, Eck Doerry

OUTLINE

Elicitation
Functional requirements
Non-functional requirements

PO L REALLY
NEED ALL
THESE.?

"guireens i
inition « We are not going to talk about

S ' tools.
NS :

» Check INCOSE web site for tool
information:;

http://www.incose.org/productspubs/products/rmsurvey.aspx

http://vizconsult.wordpress.com/2011/03/09/requirements-definition/ 2

WISDOM FROM DILBERT

WALLY, WE DON'T HAVE
TIME TO GATHER THE
PRODUCT REQUIRE-
MENTS AHEAD OF
TIME.

S awms www. unitedmedia.com

I WANT YOU TO START
DESIGNING THE
PRODUCT ANYWAY.
OTHERWISE IT WILL
LOOK LIKE WE AREN'T
ACCOMPLISHING ANY-

THING.

SIG({47 € 1997 United Feature Syndicate. inc.

OF ALL MY PROJECTS,
I LIKE THE DOOMED
ONES BEST.

REQUIREMENTS: OVERVIEW

A high-level, non implementation-specific statement of a software
system'’s intended functions or services

* Fundamental reference point between developer and customer

Functional requirements:

« Define system capabilities, what functions the system provides...
« ...without saying how they should be provided: What, not how
» Impossible to do this perfectly, but worthwhile trying

Performance (non-functional) requirements:

« Computational performance

- Usability (Ul performance) b 4
Other constraints: . |

« Platforms, implementation languages, etc. ﬁ

 Infrastructure that your piece must fit in.

REQUIREMENTS: QUALITY

According to the International Institute of Business Analysts (IIBA), good
requirements can be described via these criteria:

+ Requirements are complete. They must be as complete as possible with no
open-ended parts or opportunity for interpretation.

+ Requirements are testable. One must be able to create a test or some sort of
proof that the requirement has been met.

+ Requirements must be consistent with each other with no conflicts between
what they are specifying.

* Requirements must be design-free. Software requirements should be specified
in what the system must or must not do, but not in how the software will ensure
the requirement is met; that's design.

* Requirements must be unambiguous. No wishy-washy statements nor
(conceptually) anything that can be interpreted differently than intfended.

REQUIREMENTS ELICITATION

- Primary means: Interviewing

« A structured discussion between client
stakeholders and developer.

« Covers all stakeholders, especially end-users!

* Closed vs. open interviews
* Open: No pre-defined agenda

exploring issues “Your resume says)ou are very
Used early to explore domains and challenges. professional and have experience
. Cl d: Set nd f tion in requirements elicitation. Have
o 1is VIR SISO ORI e OIS you considered a career in fiction

Used to drill deeper as team fleshes out particular writing?"
functional areas and builds business understanding.

+ No meeting will be purely open or
closed
Shift fluidly back and forth as needed.

http://www.modernanalyst.com 6

INTERVIEWING:
BEST PRACTICES

Understand and clearly define the user domain

* Prepare ahead! Read up on client’s business, the competition, the area.
« Clarify all relevant domain tferminology (domain dictionary)

* You are not turning intfo domain experts, must understand the dynamics!

Avoid use of software-specific terms in discussions with the customer
Limit open exploration that is leading nowhere...gently!

Be prepared with specific questions, issues to explore
» Use this to structure the discussion, bring you back when it drifts
* You are the expert in what you're missing! Drive the discussion!

Present specific options and alternatives
* Not “what do you want2” but “is this what you mean/wante”
« Early prototype is invaluable

EVOLUTION OF REQUIREMENTS

Customer
Requirements

Requirements

Product

Product Component
Requirements

* What the customer
expects the product
(e.g., system) to do.

* May include part of
original project
description.

e Generally derived from
end-user requirements

* Focus on domain-
driven descriptions of
functions needed

¢ Translation of the

customer

requirements into

clear, concise,

testable, verifiable

requirements

e Addresses customer
requirements and fills
in fechnical elements
needed to fully
specify the product

e Good requirements-

ese

* Derivation of
product requirements
related to specific
modules and product
components.

e Basis for component
design and
implementation.

EVOLUTION OF REQUIREMENTS

- Example 1: Domain-level user requirements

« “The user shall be able to search either all of the initial set of databases of
hotels and ifineraries or select a subset from it.”

- Example 2: Functional System Requirements
« “4.1 Administrator
4.1.1 Login
« 4.1.1.1 Administrators will be able to login with their username and password
« 4.1.1.2 Administrators will be able to change their password
* 4.1.1.3 Administrators will be able to create new user accounts”

- Example 3: Product Component Requirements

- “Every order shall be allocated a unique identifier A 0
(ORDER_ID) which the user shall be able to copy ;‘, :
to the order identifier text field.”

USE CASES, USER STORIES

- Basically: Step-by-step descriptions of specific usage scenarios
« Each use case covers a particular scenario

* Necessarily incomplete. Can't trace all scenarios, but should cover all
main ones

- Elements:
« Informally: Descriptive walk-through of key usage scenarios.
« Formally: Requirement association; goals; conditions; events.
« Start with informal, via interviews; then transform to formal for write-up

¢ See: http://www.cmcrossroads.com/article/defining-requirement-types-traditional-vs-use-cases-vs-user-stories?page=0%2C0

S38. Caller calls EMS directly and leaves a message
Requirements: R4.1.
Precondition: Has (n) New, Connected.
Postcondition: Has (n+1) New, Left Message, Connected.
A caller calls EMS directly and chooses the ”Leave message” menu item.
EMS asks the caller to enter a subscriber’s telephone number.
The caller dials the subscriber’s telephone number.
EMS plays the subscriber’s name and announcement.
The caller leaves a message.

S W =

10

NON-FUNCTIONAL
REQUIREMENTS

- Performance: Not the what, but the how (fast/usable/etc.)
* Not just any implementation that technically provides all functions will do!

 Documents expectations on speed and accuracy of system performance
Reliability
Computational performance
Usability; Ul Perfformance

* Focus on clear numeric metrics, and measurable requirements!

- Environmental Constraints

- Describe context your software must live in
« Constrain implementation options
Compadtibility: Platforms, languages, interconnection
Evolvability: Requirements to ease future extension
Portability: platform independence, cross-platform (e.g. browser) function
Maintainability: code base management, documentation, commenting

11

HIGH-QUALITY REQUIREMENTS

How to we know that requirements are met?

 Is every functional requirement met in the implementation? s rr—
- Are non-functional and performance requirements all met? @W
ROOM?

i

WHAT'S THE CURRENT
PROCESS FOR DUSTING?

Verlfl q b I I Ill.y ISN'T HOMEWORK MORE
« The quality of being able to be verified or falsified IMPORTANT?
For requirements: ability to concretely verify each one
« Informal verification: Check/document that all regs. met
« Formal verification: Experimental or empirical verification
Test suites/harnesses that have tests for each requirement

Ideally fully-automated
Usability must be empirically tested (user testing)

HOW DO I KNOW WHEN

Software Assurance . T T
- a planned and systematic set of activities that ensures that software
processes and products conform to requirements, standards, and

procedures.

Goal: Build requirements that can be clearly verified!

12

TOOLS: REQUIREMENTS CHECKLIST

Functional Requirements

Performance

Manageability & Maintainability

Usability

Interfaces (Systems, Network,
Hardware) and Integration

Requirements Documentation

Are business rules defined?

Are input and output processing actions specified?

Is every function supporting an input or output described?

Are validity checks on the inputs defined?

Is the exact sequence of operations described?

Are specific responses to abnormal situations needed? (e.g., overflow, communication facilities, error
handling/recovery)

What about the effect of parameters?

o Are relationships of outputs to inputs described? (e.g., input/output sequences, formulas for input to output

conversion)

Are required user interfaces described? (e.g.. screen formats or organization, report layouts, menu structures,
error and other messages, or function keys)

Are explicitly undesired events/inputs described, along with their required responses?

Are static and dynamic numerical performance requirements identified?
Are all performance requirements measurable?

Are explicit latency requirements identified?

Are capacity requirements measurable?

Are specific and measurable requirements identified for availability?
Are specific and measurable requirements identified for reliability?

Are there requirements specific to the management of the deliverable product or service?
Avre there requirements for product or service health monitoring, failure conditions, error detection, logging. and
correction?

e Are there requirements specifically related to ease of maintenance?

Are normal and special operations specified?

Are usability requirements defined?

Is each required interface with another product or system described?
Is each required interface with a network component described?

See entire Requirements Checklist example at:

https://wiki.cac.washington.edu/display/pmportal/Requirements+Checklist

[i&

GOOD REQUIREMENTS ARE SMART

Specific -
It must address only one aspect of the system design or performance
I(’rhmus)’r be expressed in terms of the need (what and how well), not the solution
ow).
Measurable -
Performance is expressed objectively and quantitatively
E.g., an exact space telescope pointing precision requirement (in degrees) can be
tested and thus verified prior to launch.
Achievable -
It must be technically achievable at costs considered affordable
E.g.. James Webb Space Telescope early designs specified an aperture requirement
eventually de-scoped due to technical issues with deployment.
Relevant -
It must be appropriate for the level being specified
E.g., requirement on the solar cells should not be designated at the spacecraft level.

Traceable -

Lower level requirements (children) must clearly flow from and support higher level
requirements (parents).

Requirements without a parent are referred to as orphans, and need fo be assessed
for necessity of inclusion.

14

SMART Requirements; Mike Mannion, Barry Keepence; ACM SIGSOFT, SE Notes Vol 20, No. 2, April 1995

WRITING GOOD REQUIREMENTS

When writing effective requirements, remember the following basic
concepts:

Make sure each requirement is necessary, verifiable, and achievable.
Write clearly, simply, concisely and unambiguously.
Make sure each requirement is unique and traceable.
Use only one “shall” per statement.

Specify *what'’s required," not "how to do it".
Do noft specify a design constraint unless it is necessary to do so.

Avoid buzz words and project-speak.
Keep the language active and positive vs. passive and negative.
Be consistent with your choice of phrasing throughout.

Do not assume the reader will know what you meant. Focus on careful
complete description. Repeat definitions as necessary.

15

http://www.incose.org/chicagoland/docs/WritingEffectiveRequirements.pdf

CONCLUSION

« Clear and complete requirements are key to project success

« Aligns client and develop understanding and expectations of function and
performance

« Gets you paid, helps you win in court.

* It is hard to write good requirements! A real skill...
« Important to have a clear process, strong structure, and commitment
* Many guidelines and good reference sources
* You get better with it as you practice it (painful mistakes...)

- Learn to help your client understand what they really need!
* You are the technical expert: Guidance on best cost/benefit solution

« Desirement — something that would be nice to have but is not mandatory for
product success

* Requirement — something that must be done for the product to be successful

http://www.incose.org/chicagoland/docs/WritingEffectiveRequirements.pdf

16

REQUIREMENTS: PARTING SHOT

THE FAR SIDE By GARY LARSON

Don’t let this be
you and your
client!

Suddenly, a heated exchange took place
between the king and the moat contractor.

{7/

