

REQUIREMENTS

ACQUISITION

Collaborators: Steve Jacobs, John Georgas, Eck Doerry

OUTLINE

•  Elicitation
•  Functional requirements
•  Non-functional requirements

http://vizconsult.wordpress.com/2011/03/09/requirements-definition/

•  We are not going to talk about
tools.

•  Check INCOSE web site for tool
information:

http://www.incose.org/productspubs/products/rmsurvey.aspx

2

WISDOM FROM DILBERT

3

REQUIREMENTS: OVERVIEW

•  A high-level, non implementation-specific statement of a software
system’s intended functions or services
•  Fundamental reference point between developer and customer

•  Functional requirements:
•  Define system capabilities, what functions the system provides…
•  …without saying how they should be provided: What, not how
•  Impossible to do this perfectly, but worthwhile trying

•  Performance (non-functional) requirements:
•  Computational performance
•  Usability (UI performance)

•  Other constraints:
•  Platforms, implementation languages, etc.

•  Infrastructure that your piece must fit in.

4

REQUIREMENTS: QUALITY

According to the International Institute of Business Analysts (IIBA), good
requirements can be described via these criteria:
•  Requirements are complete. They must be as complete as possible with no

open-ended parts or opportunity for interpretation.

•  Requirements are testable. One must be able to create a test or some sort of
proof that the requirement has been met.

•  Requirements must be consistent with each other with no conflicts between
what they are specifying.

•  Requirements must be design-free. Software requirements should be specified
in what the system must or must not do, but not in how the software will ensure
the requirement is met; that’s design.

•  Requirements must be unambiguous. No wishy-washy statements nor
(conceptually) anything that can be interpreted differently than intended.

5

REQUIREMENTS ELICITATION

•  Primary means: Interviewing
•  A structured discussion between client

stakeholders and developer.
•  Covers all stakeholders, especially end-users!

•  Closed vs. open interviews
•  Open: No pre-defined agenda

•  exploring issues
•  Used early to explore domains and challenges.

•  Closed: Set agenda of questions
•  Used to drill deeper as team fleshes out particular

functional areas and builds business understanding.

•  No meeting will be purely open or
closed

•  Shift fluidly back and forth as needed.

http://www.modernanalyst.com 6

INTERVIEWING:
BEST PRACTICES

•  Understand and clearly define the user domain
•  Prepare ahead! Read up on client’s business, the competition, the area.
•  Clarify all relevant domain terminology (domain dictionary)
•  You are not turning into domain experts, must understand the dynamics!

•  Avoid use of software-specific terms in discussions with the customer

•  Limit open exploration that is leading nowhere…gently!

•  Be prepared with specific questions, issues to explore
•  Use this to structure the discussion, bring you back when it drifts
•  You are the expert in what you’re missing! Drive the discussion!

•  Present specific options and alternatives
•  Not “what do you want?” but “is this what you mean/want?”
•  Early prototype is invaluable

7

EVOLUTION OF REQUIREMENTS

Customer
Requirements

Product
Requirements

Product Component
Requirements

•  What the customer
expects the product
(e.g., system) to do.

•  May include part of
original project
description.

•  Generally derived from
end-user requirements

•  Focus on domain-
driven descriptions of
functions needed

•  Translation of the
customer
requirements into
clear, concise,
testable, verifiable
requirements

•  Addresses customer
requirements and fills
in technical elements
needed to fully
specify the product

•  Good requirements-
ese

•  Derivation of
product requirements
related to specific
modules and product
components.

•  Basis for component
design and
implementation.

STM 931.1, Rev 05, 03-01-05
8

EVOLUTION OF REQUIREMENTS

•  Example 1: Domain-level user requirements
•  “The user shall be able to search either all of the initial set of databases of

hotels and itineraries or select a subset from it.”

•  Example 2: Functional System Requirements
•  “4.1 Administrator

•  4.1.1 Login

•  4.1.1.1 Administrators will be able to login with their username and password
•  4.1.1.2 Administrators will be able to change their password
•  4.1.1.3 Administrators will be able to create new user accounts”

•  Example 3: Product Component Requirements
•  “Every order shall be allocated a unique identifier

 (ORDER_ID) which the user shall be able to copy
 to the order identifier text field.”

9

USE CASES, USER STORIES

•  Basically: Step-by-step descriptions of specific usage scenarios
•  Each use case covers a particular scenario
•  Necessarily incomplete. Can’t trace all scenarios, but should cover all

main ones
•  Elements:

•  Informally: Descriptive walk-through of key usage scenarios.
•  Formally: Requirement association; goals; conditions; events.
•  Start with informal, via interviews; then transform to formal for write-up

•  See: http://www.cmcrossroads.com/article/defining-requirement-types-traditional-vs-use-cases-vs-user-stories?page=0%2C0

10

NON-FUNCTIONAL
REQUIREMENTS

•  Performance: Not the what, but the how (fast/usable/etc.)
•  Not just any implementation that technically provides all functions will do!
•  Documents expectations on speed and accuracy of system performance

•  Reliability
•  Computational performance
•  Usability; UI Performance

•  Focus on clear numeric metrics, and measurable requirements!

•  Environmental Constraints
•  Describe context your software must live in
•  Constrain implementation options

•  Compatibility: Platforms, languages, interconnection
•  Evolvability: Requirements to ease future extension
•  Portability: platform independence, cross-platform (e.g. browser) function
•  Maintainability: code base management, documentation, commenting

11

HIGH-QUALITY REQUIREMENTS

•  How to we know that requirements are met?
•  Is every functional requirement met in the implementation?
•  Are non-functional and performance requirements all met?

•  Verifiability
•  The quality of being able to be verified or falsified

•  For requirements: ability to concretely verify each one
•  Informal verification: Check/document that all reqs. met
•  Formal verification: Experimental or empirical verification

•  Test suites/harnesses that have tests for each requirement
•  Ideally fully-automated
•  Usability must be empirically tested (user testing)

•  Software Assurance
•  a planned and systematic set of activities that ensures that software

processes and products conform to requirements, standards, and
procedures.

•  Goal: Build requirements that can be clearly verified!

http://www.modernanalyst.com

12

TOOLS: REQUIREMENTS CHECKLIST

See entire Requirements Checklist example at:

https://wiki.cac.washington.edu/display/pmportal/Requirements+Checklist
 13

GOOD REQUIREMENTS ARE SMART

•  Specific -
•  It must address only one aspect of the system design or performance
•  It must be expressed in terms of the need (what and how well), not the solution

(how).

•  Measurable -
•  Performance is expressed objectively and quantitatively
•  E.g., an exact space telescope pointing precision requirement (in degrees) can be

tested and thus verified prior to launch.

•  Achievable -
•  It must be technically achievable at costs considered affordable
•  E.g., James Webb Space Telescope early designs specified an aperture requirement

eventually de-scoped due to technical issues with deployment.

•  Relevant -
•  It must be appropriate for the level being specified
•  E.g., requirement on the solar cells should not be designated at the spacecraft level.

•  Traceable -
•  Lower level requirements (children) must clearly flow from and support higher level

requirements (parents).
•  Requirements without a parent are referred to as orphans, and need to be assessed

for necessity of inclusion.

SMART Requirements; Mike Mannion, Barry Keepence; ACM SIGSOFT, SE Notes Vol 20, No. 2, April 1995

14

WRITING GOOD REQUIREMENTS

When writing effective requirements, remember the following basic
concepts:

•  Make sure each requirement is necessary, verifiable, and achievable.

•  Write clearly, simply, concisely and unambiguously.

•  Make sure each requirement is unique and traceable.

•  Use only one “shall” per statement.

•  Specify “what’s required," not "how to do it".
•  Do not specify a design constraint unless it is necessary to do so.

•  Avoid buzz words and project-speak.

•  Keep the language active and positive vs. passive and negative.

•  Be consistent with your choice of phrasing throughout.

•  Do not assume the reader will know what you meant. Focus on careful
complete description. Repeat definitions as necessary.

http://www.incose.org/chicagoland/docs/WritingEffectiveRequirements.pdf 15

CONCLUSION

•  Clear and complete requirements are key to project success
•  Aligns client and develop understanding and expectations of function and

performance
•  Gets you paid, helps you win in court.

•  It is hard to write good requirements! A real skill…
•  Important to have a clear process, strong structure, and commitment
•  Many guidelines and good reference sources
•  You get better with it as you practice it (painful mistakes…)

•  Learn to help your client understand what they really need!
•  You are the technical expert: Guidance on best cost/benefit solution
•  Desirement – something that would be nice to have but is not mandatory for

product success
•  Requirement – something that must be done for the product to be successful

http://www.incose.org/chicagoland/docs/WritingEffectiveRequirements.pdf

16

REQUIREMENTS: PARTING SHOT

17

Don’t let this be
you and your

client!

