

With contributions by: Steven Jacobs, Eck Doerry

With credit and thanks for some slides and ideas to Larry Bernstein’s Quantitative Software Engineering
Course at Stevens Institute of Technology, Hoboken, NJ

Software Requirements
Development Process

1.  Requirements Elicitation (what the user wants)

2.  Requirements Analysis (filling in the blanks)

3.  Use Cases (Explore interaction dynamics)

4. Prototype/Modeling (prove that it can work)

5.  Requirements Specification (formalize it)

6.  Requirements Management (trace/verify)

2

Software Prototyping
Process

� Software prototyping:
�  the process of creating an

incomplete model of the future full-
featured software

�  Or of key pieces/modules

� Process:
�  Identify basic requirements

�  Develop Initial prototype

�  Review with customers users

�  Revise and enhance

3 http://crackmba.com/tag/sdlc/

Key tool for targeting
implementation!

Prototypes as Specifications?

�  Could we use a prototype as a specification?
�  “Let me show you sort of what I want (prototype)…”

�  “…and then we’ll use that as spec!”

� No! Because:
�  Some parts of the requirements may be impossible to prototype

�  E.g., safety-critical functions

�  An implementation has no legal standing as a contract! It is no
substitute for a clear specification of requirements.

�  Non-functional requirements cannot be adequately tested in a
system prototype

4

Types of Software Prototypes

�  Throwaway prototype:
�  Idea: creating a very rapid model (demonstration or marketing)

�  Early tool for envisioning software look and feel.

�  Could be paper: posters, screen sheets

�  Evolutionary prototype:
�  Idea: Build the basic framework, flesh out

�  Lots of “stubs” that evolve in function

�  Pros: Build once, in slowly fleshing out stages

�  Cons: Less feel for big picture dynamics, inability to evolve technologies

�  Incremental:
�  Idea: Build complete system…and then rebuild it…

�  …at different levels of quality/function/completeness

�  Pros: complete picture, ability to change decision for each increment

�  Cons: Waste of (re-)creating system several times
5

Why? Serial development is costly!

Cost of
Change

Time

The Longer You Wait
for Feedback, the

more costs are sunk.

6

Prototyping of whole and/or key pieces allows for continuous
re-targeting of design vision

Technicians

Cost of Work
Today Technicians

Work Cost
savings

System
Administrator

Cost of System
Operation

Cost of System

Hardware

Software

Training

Standards Reuse
Processes

Tools
Technology

Benefit
(e.g. $5M/year)

Developer

How does prototyping make sense?

7

Cost/Benefit equation for Automation

Example Project A: Order Reading and
Analysis Software

• 

•  Business:
•  Automated order processing
•  Interfaces with online submission, cust. Support, etc.

•  Size of Prototyping Effort:
•  12K lines of C Code (10% of final system module)

•  Purpose:
•  Find a method for order reading and analysis, applicable

to variable formats.

•  Duration and Staff of Prototype:

•  Four people for eight months.

8

 Final requirements were based on prototype results.
à more detailed insights

2. Alerted developers to the possibility of a having a tunable
system.
à improved solution.

3. Early evaluation of functional decomposition and performance
showed bottlenecks in the dispatcher.
à highlighted an area to guide implementation focus.

4. Eliminated the possibility of reusing code from another project.
à Avoided later crash of project timeline

 5. Prototype was thrown away due to decomposition and
performance problems.
à Prototype adequate to answer targeted questions…but no more.

Example A: Prototyping Results

9

Size of Effort: 5% of 500K line of source code.

Purpose:

 To evaluate database structures for an outside-of-plant database
and to experiment with approaches to handling multiple future
states of equipment usage.

Duration: Three people for 15 months.

Project Example B: Outside Plant
Database System

10

1.  A data base structure using hyper graph theory was invented.
à develop/test a missing technological solution

2.  An algorithm for handling both time-driven and event-driven
assignments was invented
à develop/test a missing technological solution

3.  The prototype became the basis for the production code.
à don’t always throw out the prototype! Re-implement algos in main (industrial
strength) language.

4.  UNIX flat files were used to model loop plant by way of a directed
graph.
à Quick and dirty way to “git er dun”. Cheap way that would never work for real
system is fine to get prototype going fast.

5.  The prototype showed database portability from Unix to the
Mainframe.
à Proves an important concept à refined project timeline

Example B: Prototyping results

11

TRADITIONAL PROTOTYPE BASED

40% REDUCTION

20%

80%

40%

30%

45%

25%

Systems
Engineering

Design,
Develop,

Test,
Install

Final
Development,
Deployment

Systems
Engineering &

Prototype

Final
Development

Deployment

Effects of good prototype utilization

12

So: Prototypes are vital

�  Benefits:
�  Misunderstandings between software users and developers are exposed

�  Missing services may be detected and confusing services may be identified

�  A working system is available early in the process

�  The prototype may serve as a basis for deriving a system specification

�  The system can support user training and system testing

�  Keys to success:
ü  Plan to build a prototype

ü  Document feedback from customer for the prototype.

ü  Manage the feedback into the software product

13

Prototyping with Reuse

�  Idea: Don’t re-invent the wheel…until you need to
�  Integrate existing systems to provide key functionality.

�  Adequate for prototype…but may need to re-implement later for efficiency,
speed, or licensing reasons.

�  Application level development
�  Entire application systems are integrated with the prototype so that their

functionality can be shared
�  For example, if text preparation is required, a standard word processor

software could be integrated

�  Component level development
�  Piece together prototype from mutually independent components.

�  Individual components are integrated within a standard framework to
implement the system

�  Framework can be a scripting language or an integration platform.

14

Prototyping Approaches

Prospectus

Evolutionary
prototyping

Throw-away
Prototyping

Delivered
system

Executable Prototype +
System Specification

15

� The objective of evolutionary prototyping is
to deliver a working system to end-users
�  The development starts with those

requirements which are best understood.

� The objective of throw-away prototyping is
to validate or derive the system
requirements
�  The prototyping process starts with those

requirements which are poorly understood

16

Evolutionary Prototyping

� Objective:
�  deliver a working system to end-users

�  The development starts with those requirements which are best
understood.

�  Used for systems where the requirements specification cannot be
developed in advance

�  Based on techniques which allow rapid system iterations

�  Verification is impossible as there is no advance specification

�  Validation means demonstrating the adequacy of the system

17
http://base0.net/posts/big-bang-theory-intro-12-evolution-of-man/

Evolutionary Prototyping
Flow

Build prototype
system

Develop abstract
specification

Use prototype
system

Deliver
system

System
adequate?

YES

N

18

NO

Evolutionary Prototyping
Advantages

�  Accelerated (“continuous”) delivery of the
system
�  Rapid delivery and deployment of even a rudimentary

system are sometimes more important than functionality
or long-term software maintainability

�  User engagement with the system
�  Users involved in development cycle.

�  Not only is the system more likely to meet user
requirements, they are more likely to commit to the use of
the system

19

Evolutionary Prototyping Techniques
�  Specification, design and implementation are intertwined

�  Agile methods shine here

�  The system is developed as a series of increments that are
delivered to the customer
�  Customer (or market) must be accepting of evolution

�  First iterations of actual system often very rough

�  Techniques for rapid system development are used such as
CASE tools and 4th Generation Languages (4GLs)
�  Visual programming, package-driven dev.

�  User interfaces are usually developed using a GUI
development toolkit à rapid prototyping, editing

20

Evolutionary Prototyping
Challenges

�  Management problems
�  Existing management processes assume a waterfall model of

development.

�  Specialist skills (agile, packages, etc.) are required which may not
be available in all development teams

�  Maintenance problems
�  Continual change tends to corrupt system structure so long-term

maintenance is expensive

�  Contractual problems
�  No specs?

�  How to specify final deliverable?

21

Incremental Prototypes
�  System is developed and delivered in increments

after establishing an overall architecture

�  Requirements and specifications for each
increment may be developed

�  Users may experiment with delivered increments
while others are being developed
�  These serve as a form of prototype system

�  Intended to combine some of the advantages of
prototyping
�  More manageable process

�  Better system structure

22
www.tecgraf.puc-rio.br/~ismael/

Incremental Development
Flow

Validate
increment

Build system
increment

Specify system
increment

Design system
architecture

Define system
deliverables

System
complete?

Integrate
increment

Validate
system

Deliver final
system

YES

NO

23

Throw-away Prototypes

�  Used to reduce requirements risk
�  When client is not sure of requirements/what they want
�  Not sure the vision they have would really work in real life

�  The prototype is developed from an initial specification,
delivered for experiment then discarded

�  The throw-away prototype must NOT be considered as a final
system
�  Some system characteristics may have been left out
�  There is no specification for long-term maintenance

�  The system will be poorly structured and difficult to maintain

�  Often written for speedy testing of concept…not efficiency

�  Often use rapid prototyping tools/languages.

24

Throw-away Prototyping

Outline
requirements

Develop
prototype

Evaluate
prototype

Specify
system

Develop
software

Validate
system

Delivered
software
system

Reusable
components

25

Part 2: Building Prototypes
�  Early prototyping focuses on fast exploration

�  Rapid Prototyping: Typically small, focused throwaway prototypes

�  Emphasis: fast answers to specific question/risks

�  What to prototype?
�  Principle 1: Focus on uncertainty and high risk issues

�  Performance of new algorithms or hardware
�  Critical choices of frameworks, libraries, subsystems (e.g. DB)

�  Critical user issues: Basic GUI metaphor, key actions/screens, visualizations

�  Principle 2: the 20/80 rule
�  Focus on the 20% of the functionality that will be used 80% of the time.

�  Develop complete set of users flows that cover all main interactions.
�  Requires very solid understanding of user domain and workflows!

�  Principle 3: Choose the right level of fidelity to target.
�  Focus on minimum function needed to answer the open spec. issue

�  Visual fidelity: rough paper sketches ß à High-fidelity graphics
�  Functional fidelity: (Semi-)Static elements ß à interactive responsiveness

�  Content fidelity: lorem ipsum ßà actual domain content

26

Building Prototypes (cont.)

�  Different types of prototypes:
�  Database prototype: Explore/develop appropriate database substrate to

support project. Issues: speed, connectivity, robustness, etc.
�  Performance prototype: Explore/prove algorithms or hardware

performance critical for system success

�  User Interface prototype: Explore key metaphor, layout and user flow
questions in whole system, or in key modules/elements.

�  Need to develop effective prototyping plan:
�  May have several focused prototypes to test key pieces

�  Each type of prototype has “best” languages/approaches

�  Develop complete plan to cover all critical/risky elements

�  Identify and prioritize “critical path” questions.
�  Things at the “design root”, that affect many other design decisions
�  Prioritize development of those. May influence need/nature of other prototypes

27

Database Prototypes

�  Focus is on understanding data storage issues
�  Complexity of data schema needed
�  Type of DB needed (relational, noSQL, flat file)

�  Capabilities: can chosen system support the DB interactions
needed
�  Connectivity and programmatic access support (APIs)
�  Level of SQL implementation provided

�  Transaction rate. Roll-back/recovery options.

�  Special features: e.g. object-relational, distributed models
�  Cost/performance trade-offs.

DB
programming

language

Interface
generator Spreadsheet

Report
generator

Database management system

Fourth-generation language

28

�  Variety of Tools:
�  ER-based DB generators
�  Simple and fast: MS Access

�  Actual systems plus their dev. Tools:
MySQL, MongoDB

�  Full-on systems with strong DB
integration: Ruby-on-Rails, some Webapp
frameworks

Performance prototypes
�  Goal: Explore mission critical performance challenges
�  Type 1: Computational methods exploration

�  Have a functional need, e.g., dynamic tree layout, large-scale search

�  Have idea for algorithmic solution. Or existing ones that might work.

�  Goal: Implement/port/adapt algorithm. Test on representative data.

�  Result: Is algorithm good fit for solving problem? Discover alternatives.

�  Type 2: Computational performance test
�  Have functional need foreseeable in design

�  Search, sort, layout, rendering, etc.

�  Possibly on unusual (e.g. enormous) datasets

�  Have well-known existing software packages or hardware.

�  Goal: Test specific performance of available software/hardware on
specific datasets/data volume anticipated in application.

�  Result: Clear performance data proving/rejecting solution.

�  Tools:
�  Few shortcut tools. Must implement realistic test program in actual

targeted implementation language
�  Key: narrowly implement minimal test harness!

29

User interface prototyping
�  High impact: GUI development is often 80% of sys. cost!

�  Goal: Explore fundamental GUI dynamics
�  Impossible to textually specify the “look & feel” effectively. Must see it.

�  UI prototypes allow testing/refining dynamic aspect of user interaction.

�  Successful UI prototypes can be used to ground a system spec.

�  Wide variety of tools can be used:
�  Static: pencil/paper, graphics editors (Omnigraffle)

�  Dynamic: Hypermedia (Director), Visual Basic, Widgets+scripting (TCK/
TK).

�  Evolutionary tools: HLL languages with GUI builders (Xcode, Android IB)

�  Web interfaces:
�  web site editors (Dreamweaver, etc.)

�  Pre-built JS packages (Bootstrap, etc.)

30

Side Trip:
Visual programming

�  A broad metaphor in programming languages
�  Idea: visually depict program function
�  How is works:

1.  drag-n-drop together pre-defined elements on a palette

2.  Configure and connect them together

3.  Actually run this visual representation

�  Fast edit-test cycle makes them ideal for rapid prototyping

�  Type 1: Computational process modelling
�  Draw out flow of computation

�  Nodes are pre-defined (configurable) processing tools

�  “Run” the visual network with input to produce result

�  Examples: Visual Basic, Labview, Alice, etc.

31

Example: Computational Process Modeling

�  Kepler Project

�  Modeling scientific
data processing
workflows

�  Could be used to
model any data
processing and
manipulation

�  Includes large
library of
configurable
processing nodes.

�  Includes many data
visualization and
graphing tools.

�  Widely-used!

32

Visual programming
�  Type 2: User Interface modelling

�  WSYWYG GUI design: rapidly lay out UI

�  Large selection of GUI elements or “widgets”

�  Physical: Windows, buttons, menus, menu items
�  Logical: Layout managers, active modules (e.g. login dialog)

�  Laid out on the actual viewport/real estate of target UI
�  Direct representation: Large screen, small screen, mobile device

�  Dynamic behavior to connection to events and handlers
�  May have “default” events and handlers built in.

�  Works well for “standard” GUIs
�  Standards GUI elements and interaction techniques

�  No support for custom graphics or interactive behaviors

�  Examples: Xcode GUI builder, Android Dev. Kit, some website/
webapp toolkits.

33

Example: Xcode Interface Builder

34

�  WSYWYG
layout of
elements

�  Connect events
to handler code

�  Great to
prototype...

�  ...then flesh
out for full
application
functionality

�  Fully integrated
in Apple
software IDE:
remains active
throughout
coding phase.

Challenges with Visual
Programming

�  Weak system architecture
�  Grouped by graphics, not logic
�  (re)factoring?

�  Complex dependencies
�  Can have large number of connections

of elements

�  Every connection creates dependency
�  Debugging and Maintainability

challenges

�  Can be difficult to coordinate
team development
�  Often poor modularity

�  Depencies + multiple
programmers = confusion

35

http://www.pcmag.com/encyclopedia/term/53558/user-interface

Summary: Prototyping
The Right Mindset

�  Commitment to the concept
�  Prototyping as critical for system parts that cannot be effectively

pre-specified

�  Focus:
�  Narrowly on mission-critical risk/issues

�  Partial functionality. What is needed only.

�  Tools:
�  Choose the right tools for fastest create/review cycle

�  Hypermedia, scripting, visual programming, existing packages

�  For web apps: sites that provide infrastructure (DBs, frameworks)

�  Involve End-users
�  Users must be involved in prototype evaluation

�  For GUIs...but also for performance tests and other “content”

36

Summary: Prototyping
Multiple prototypes to progressively

develop spec.

37

Static screen
walkthroughs

Visual Basic,
Adobe Director

Testbeds,
performance tests

Rough
implementations

of targeted
features

Software Prototyping: Review

�  Types: Throwaway, Evolutionary, Incremental
�  Each has advantages and disadvantages
�  Choice depends on:

�  Timeline: how fast does user need product

�  Prototyping goals: a small part, the whole thing?

�  Users: how tolerant to partial, evolving functionality

�  Others: need to consider context carefully

�  Prototyping Tools:
�  Paper/pencil, drawing packages,

�  hypermedia, scripting languages,

�  WSYWYG GUI generators.

�  Libraries and development frameworks
�  Simulation technologies

38

39

