

ME 476C Capstone Project

Summer 2025

RE Lab Solar Heater

Jacob Apodaca

Brendan Frazier

Tyler Hedgecock

Joseph Meza

Calvin Schenkenberger

Northern Arizona University

Flagstaff, AZ 86001

Project Description

Primary Goal

• Implement a solar air heater to provide heat to the Renewable Energy Lab to offset the current, nonrenewable, method of heating.

Important

- Help achieve NAU carbon neutrality plan
- Keep stored batteries above 40 °F
- Provide affordable renewable heating for low infrastructure areas

Figure 1: Air-Based Solar Thermal Panel

SolidWorks Assembly

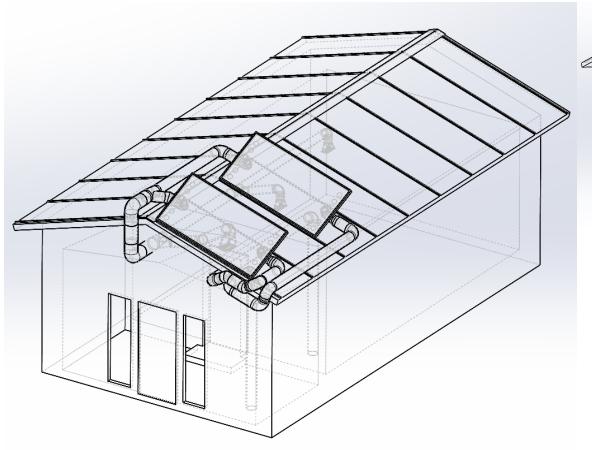


Figure 3: CAD Model

- 2 cold air inlets (1 in big room and 1 in smaller room)
- 3 heated outlets (2 in big room and 1 in smaller room)

Figure 2: CAD Model

Design Description:

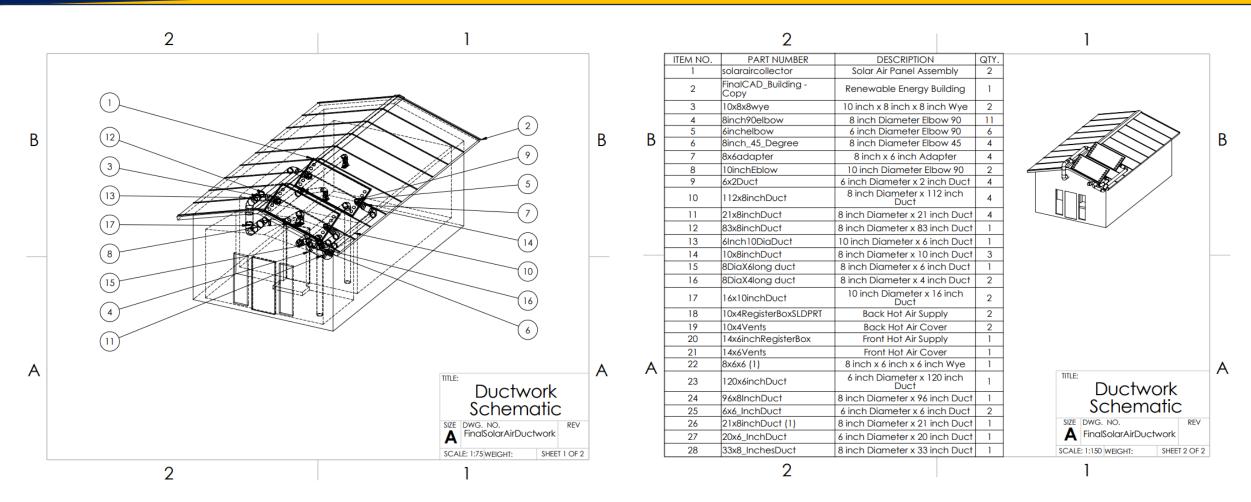


Figure 4: Ballooned CAD Drawing

Figure 5: Bill of Materials

Circuit Diagram

Components

- PV/T Panel (V1) DC Volage Supply
- 2. Fuse (F1) Current Control
- 3. Buck Converter (R1) Voltage Control
- 4. Mechanical Relay (RLY1) On/Off Switch
- Fan Electrical Load
- 6. Thermostat (V2) Voltage Supply for Relay

Future Additions

- In depth routing configuration
- Implement emergency shutoff

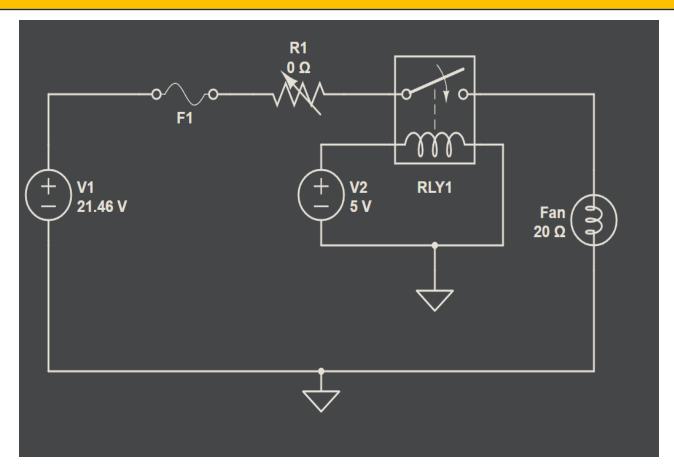


Figure 6: Circuit Diagram for Solar Thermal System

	Quality	Function Deployme	nt														
	Quanty	ranction Deployme															
	Dania at atala	: RE Lab Solar Heater											Correlation:				
	-	: Brendan Frazier	0	1										0			
			0		1								+	0	- Nonetine		
	Date	6/10/2025	+	0		1							Positive	No correlation	Negative		
				0	-	_											
			+	+	-	0	_	1									
			+	+	0	0	0		7								
			+	+	0	+	0	0		1							
			+	+	0	+	+	0	0		1		Relationships:				
			+	+	0	+	+	+	0	-		1	5	3	1	0	
		Desired direction of improvement (↑,0,↓)		1	↓	1	1	1	1	↓	↓		Strong	Moderate	Weak	None	
	1: low, 5: high	Engineering Requirements (How's)												Commetiti	a auglication (4)	laur Er biah	
		_ 7						Heat	Life		Mounting			Competitive	Vacuum Tube		
	Customer		Energy Stored	Efficient Insulation	Relay	Head Pressure	Flow Rate	exchanger	expectancy	Cost	system	Weighted	Solar Water	Solar Air	Solar	4000 Series	Hybrid Solar
	importance rating	Customer Requirements - (What's)						, and the second			· '	Score	Rating	Rating	Collector Kit	Artica Solar Air Heater	rating
	raung	4													Rating	All riedlei	
4	5	System must reduce heating load by 30% during worst case months (compared to	5	5	0	4	4	5	0	0	0	50	4	3	5	4	5
_	5	baseline method)	,	,	U	4	4	,	0	U	U	30	4	3	,	4	, ,
2	5	System must operate in winter conditions	5	5	0	5	5	3	1	0	3	55	3	3	5	4	5
3	5	System must use RE solar as primary input	5	5	0	4	4	3	0	0	5	65	5	5	5	5	3
4	3	Installation must not require major mods	0	1	0	2	2	0	0	3	5	24	2	3	3	4	5
4	3	to building	U	1	U	2	2	U	0	3	3	24	2		3	4	
5	5	System must be safe and comply with	3	3	3	4	3	3	3	0	5	70	5	5	4	5	5
5	3	codes System must have minimal maintenance	1	1	1	3	2	5	5	1	4	36	3	4	4	5	5
7	3	Payback period must be under 10 yrs	5	5	3	2	2	5	3	5	4	66	5	5	1	3	4
/	3	System must have ability to include temp.)	, ,	3	4		2	3		4	00	2		1	3	4
8	1	and performance monitoring and visual	3	0	5	5	4	3	0	0	1	12	5	5	4	4	5
		indicator of operation status															
9	3	System must not overheat or cause	5	0	5	5	4	3	0	0	2	45	5	5	4	4	5
		interior overheating															
		Technical importance score		111 14%	47 6%	126 15%	114 14%	112 14%	44 5%	27 3%	111 14%	818	37	38	35	38	3 42
		Importance % Units		R Value	6% Watts	meters	14% m^3/sec	Joules	5% Years	3% \$	14% Kilograms	100%					
		Target		10 R-Value	10 W	5 m	0.1 m^3/s	5 MJ	10 yrs	\$1,000	20 kg						
		Priorities rank	_	5	7	2	3	4	8	9	6						
			_	_		_	_			_							

Figure 7: QFD

Mounting Analysis

Assumptions:

- -Uniform Snow Distribution of 20.9 in on solar collector [40]
- -35° tilt
- -Wind speed is 25 mph or 11.176 m/s [41]
- -Snow is "normal"

Results:

Diameter of bolts ¼"

Property Class		Minimum Proof Strength,* MPa	Strength,*	Yield Strength,*	Material	Head Marking
4.6	M5-M36	225	400	240	Low or medium carbon	4.6

Figure 8: Bolt Size Table [39]

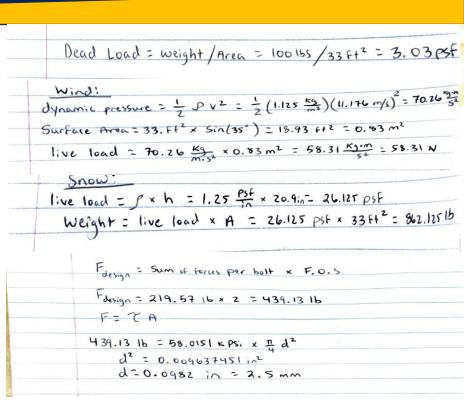


Figure 9: Mounting Calculations

Energy Analysis

Assumptions

- Building Temperature 55 Fahrenheit
- ASHRAE Solar Irradiation Data
- Incident Radiation Angle from 0 to 71.25 degrees
- Inlet Temperature same as building temperature

Energy Equations

$$q_{in} = \dot{m} * c_p * (T_{air} - T_{building})$$

Fundamental Heat Transfer Equations

$$q_r = A_s \varepsilon \sigma (T_s^4 - T_{surr}^4)$$

$$q_{conv} = hA_s(T_{mo} - T_{mi})$$

$$q_{cond} = kA(T_1 - T_2)$$

Temperature Equations

$$\overline{Nu} = 0.023 * Re^{0.8} * Pr^{0.4}$$

$$T_{out} = T_{in} + \frac{hA_s(T_{inner} - T_{in})}{\dot{m}c_p}$$

Energy Calculation: Dynamic Output

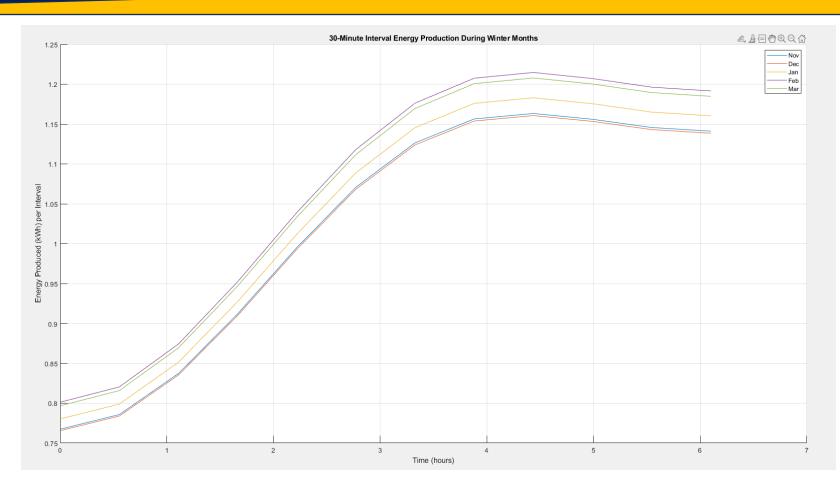


Figure 10: Dynamic Angle Energy Output

Energy Calculations: Daily Output

Importance

- Evaluate solar thermal energy captured with a dynamic angle
- Are we still meeting 30% requirement in winter

Results

- December 15% Heat Load Covered
- January 15% Heat Load Covered
- February 16% Heat Load Covered

```
--- Energy Inputs for Winter Season (Dynamic Angle) ---
Month: November
 Tilted Irradiance (peak): 939.35 W/m^2
 Absorber Plate Temp (est.): 63.53 °C
 Outlet Temperature (est.): 24.41 °C
 Energy Input: 12.26 kWh or 41823.18 BTU
Month: December
Tilted Irradiance (peak): 937.46 W/m^2
 Absorber Plate Temp (est.): 63.39 °C
 Outlet Temperature (est.): 24.36 °C
 Energy Input: 12.23 kWh or 41726.93 BTU
Month: January
Tilted Irradiance (peak): 955.45 W/m^2
 Absorber Plate Temp (est.): 64.51 °C
 Outlet Temperature (est.): 24.74 °C
 Energy Input: 12.46 kWh or 42528.31 BTU
Month: February
Tilted Irradiance (peak): 981.02 W/m^2
 Absorber Plate Temp (est.): 66.11 °C
 Outlet Temperature (est.): 25.27 °C
 Energy Input: 12.80 kWh or 43670.39 BTU
Month: March
 Tilted Irradiance (peak): 975.34 W/m^2
 Absorber Plate Temp (est.): 65.77 °C
 Outlet Temperature (est.): 25.15 °C
 Energy Input: 12.73 kWh or 43423.75 BTU
```

Figure 11: Daily Energy Output

Photovoltaic Solar Analysis

Assumptions:

- 1. Polycrystalline panels: $\lambda_a = 0.85$ [15]
- 2. Glass panels: $\lambda_c = 0.7 [10]$
- 3. Solar panels positioned on roof: $\theta = 16.77^{\circ}$
- 4. Absorber plate temperature: T a=333.15K
- 5. Cover plate temperature: T_c = 313.15K
- 6. $G = 5.461 \text{ kWh/m}^2 [38]$
- 7. Diffuse Surface: $\varepsilon = \alpha$

Solar Energy Absorbed

$$\lambda_T = 0.85 \mu m * 5800 K = 4930 \mu m * K$$

$$F(0 \rightarrow 0.85 \mu m) = 0.616725 * From Table 12.2 [10]$$

$$\alpha = 0.8(0.616275) + 0.25(1 - 0.616725) = 0.589199$$

$$G = \frac{5.641 \frac{kWh}{m^2}}{7.667 hrs} * \frac{1000W}{1kW} = 712.17 \frac{W}{m^2}$$

$$G_{abs} = \alpha G cos(90 - \theta) = 121.07 \frac{W}{m^2}$$

Voltage

$$36.68 \frac{W}{m^2} * 0.9144m * 1.524m = 51.115W$$

$$V = \frac{51.115W}{1.64} = 31.9V$$

Heat loss

$$\lambda_{a} * T_{a} = 283.1775 \mu m * K$$

$$\varepsilon_{a} = 0.25$$

$$\lambda_{c} * T_{c} = 219 \mu m * K$$

$$\varepsilon_{c} = 0.75$$

$$q''_{rad} = \frac{\sigma(T_{a}^{\ 4} - T_{c}^{\ 4})}{(\frac{1}{\varepsilon_{a}} + \frac{1}{\varepsilon_{c}} - 1)} = 35.36 \frac{W}{m^{2}}$$

$$Ra_{L} = \frac{g\beta(T_{a} - T_{c})L^{3}}{v\alpha} = 168773.51$$

$$\overline{Nu}_{L} = 4.4457 (9.54) \quad [10]$$

$$\overline{h}_{L} = \frac{\overline{Nu}_{L} * k_{f}}{L} = 2.4513 \frac{W}{m^{2} * K}$$

$$q''_{conv} = \overline{h}_{L}(T_{a} - T_{c}) = 49.03 \frac{W}{m^{2}}$$

$$q''_{total} = 121.07 \frac{W}{m^{2}} - \left(49.03 \frac{W}{m^{2}} + 35.36 \frac{W}{m^{2}}\right) = 36.68 \frac{W}{m^{2}}$$

HVAC Routing Analysis

$$AirFlow = RFL_{Rooms\ floor\ area} \times Ceiling\ height(ft) \times \frac{ACH}{60}$$

Big Room

205.98
$$CFM = 356.5 \ ft^2 \times 104 in \times \frac{4}{60}$$

Small Room

67.08
$$CFM = 115 \ ft^2 \times 105 in \times \frac{4}{60}$$

Assumptions:

ACH is 4 (the recomended value to satisfy ASHRAE) Square ft is 471.f ft^2

Results: We will need a minimum of 273.15 CFM to maintain the buildings safety requirements

Rectangular and Round Duct

Air Volume		Rectangul	Equivalent Round	Air Volume				
CFM	4"	6"	8"	10"	12"	Duct (inches)	CFM	
50	6 x 4					5	50	
75	6 x 4					6	75	
100	8 x 4	6 x 6				6	100	
125	10 x 4	6 x 6				7	125	
150	10 x 4	8 x 6				7	150	
175	12 x 4	8 x 6				8	175	
200	14 x 4	8 x 6				8	200	
225	16 x 4	10 x 6				8	225	
250	16 x 4	10 x 6				9	250	
275		12 x 6	8 x 8			9	275	
300		12 x 6	8 x 8			9	300	
400		14 x 6	10 x 8			10	400	
500		18 x 6	12 x 8	10 x 10		11	500	
600		20 x 6	14 x 8	12 x 10		12	600	
700		24 x 6	16 x 8	12 x 10		12	700	
800		26 x 6	18 x 8	14 x 10	12 x 12	13	800	
900		30 x 6	20 x 8	16 x 10	12 x 12	14	900	
1000			22 x 8	16 x 10	14 x 12	14	1000	
1100			24 x 8	18 x 10	16 x 12	15	1100	
1200			26 x 8	20 x 10	16 x 12	15	1200	
1300			28 x 8	20 x 10	18 x 12	16	1300	
1400			30 x 8	22 x 10	18 x 12	16	1400	
1500				24 x 10	20 x 12	16	1500	
1600				24 x 10	20 x 12	17	1600	
1700				26 x 10	22 x 12	17	1700	
1800				28 x 10	22 x 12	18	1800	
1900				30 x 10	22 x 12	18	1900	
2000					24 x 10	18	2000	

Figure 12: Duct sizing by CFM

Ductwork Cost Analysis

Table 1: Ductwork BOM

Bill of Materials				
Name	SKU Number	Quantity	Cost	Total Cost
10x8x8Wye	590430	2	30.94	61.88
8x6x6 Wye	643092	1	17.98	17.98
8 inch 90	148768	15	9.98	149.7
6 inch 90	148733	6	8.68	52.08
8 x 6 adapter	148857	4	14.28	57.12
10 inch 90	569844	2	14.87	29.74
6 inch duct	1013032134	1	59.98	59.98
8 inch duct	1013032129	3	67.98	203.94
10 inch duct	688736	1	24.2	24.2
10 x 4 to 6 register box	148962	2	12.49	24.98
14 x 6 to 8 register box	351407	1	14.98	14.98
10 x 4 vent	324411	2	13.98	27.96
14 x 6 vent	497808	1	14.98	14.98
Total				739.52

- \$740 Spent on Ductwork
- Ductwork is not cheap
 - o \$150 Spent on 8 inch elbows
- Majority of our design

Future CR and ER Calculations

Table 2: Customer Requirement Fulfillment

Customer Requirement	Status	Future Work
Reduce Headload 30%	Completed	Improvements on irradiance angle
Operate in Winter	Completed	None
Primarily use renewable energy	Completed	None
No major modifications	Partially Completed	Perform validation on mounting
Comply with codes	Not Completed	Reconfirm design against relevant building codes
>4 hours of maintenance annually	Not Completed	Perform maintenance time approximations
10-year payback period	Not Completed	Perform cost and time analysis
Must not overheat the building	Partially Completed	Reconfirm thermostat configuration

Failure Mode and Effect Analysis (FMEA)

Table 3: FMEA Breakdown

		Tubic 3	, i i	VILA OICA	Naci	/ V I I			
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurance (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action
Electrical Fuse	Fuse popping	Overheating & Fire Hazard	9	Over Current	2	Inspection 2x Per year	4	72	Follow safety standards
Buck Converter	Excessive Voltage Supply	Burn out fans	7	Over Voltage	3	Display of output voltage	1	21	Follow safety standards
Relay	Over cycled	Constant or zero operation	7	Over Cycled	1	Inspection 1x Per year	6	42	Moderate cycles completed
·	Contact or Coil corrosion	Constant or zero operation	7	Over current/voltage	1	Inspection 1x Per year	6	42	None
Fans	Short circuit	Burn out fans resulting in no operation	7	Assembly error	1	Inspection as needed	3	21	Follow electrical safety standards
Thermostat	Under powered	Unable to supply power to relay	4	Assembly error	4	Battery Charge Display	2	32	Provide battery storage for thermostat
L Bracket	Buckling	Loss of optimal angle	4	Excessive snow fall	2	Inspection 2x Per year	4	32	Apply FOS ~2
	Shear failure	Complete system failure	10	Excessive wind	1	Inspection 2x Per year	4	40	Apply FOS ~2.5
Rail	Bending	Loss of optimal angle	5	Excessive snow fall	2	Inspection 2x Per year	4	40	Apply FOS ~2
	Shear failure	Complete system failure	10	Excessive wind	1	Inspection 2x Per year	4	40	Apply FOS ~2.5
Bolts	Shear failure	Complete system failure	10	Excessive wind	1	Inspection 2x Per year	4	40	Apply FOS ~2.5
ľ	Compressive Load	Lack of air flow	5	Excessive snow fall	3	Inspection 2x Per year	4	60	Rigid outdoor ducts
Ducts	Dust Collection	Decreased energy absorption	2	Lack of maintenance	5	Inspection as needed	6	60	None
ļ	Blocked Inlet	Lack of air flow	1	Lack of maintenance	3	Inspection as needed	9	27	None
	Humidity	Uncomfortable environment	3	System overuse	1	None	10	30	None
l	Excessive bending	Lack of air flow	2	Excessive snow fall	2	Inspection 2x Per year	4	16	Improve structural setup of panels
Solar Heater	moment	System failure	10	Excessive snow fall	1	Inspection 2x Per year	4	40	Improve structural setup of panels
	Particulates covering solar panel	Lack of energy absorption	2	Lack of maintenance	2	Inspection as needed	9	36	None
	Excessive bending moment	No electrical power	9	Excessive snow fall	1	Inspection 2x Per year	4	36	Change PV/T panel selection (improved strength)
	Particulates covering solar panel	Low voltage and current output	3	Lack of maintenance	2	Inspection as needed	9	54	None
		Loss of efficiency and air flow	1	Lack of maintenance	3	Inspection as needed	9	27	None
	Cracking or lack if fill		5	Assembly error	4	None	10	200	None

Primary Subsystems

- Electrical Controls
 - Fuse
 - Relay
 - Buck Converter
- Mounting System
 - Brackets
 - o Rails
 - o Bolts
- Energy Harvesting
 - PV/T and Air Solar Panels
- HVAC Routing
 - Ducts
 - Insulation

Failure Mode and Effect Analysis (FMEA)

Future Testing

- Structural testing on mounting brackets and rails
- Improved volumetric flowrate testing
- Improved temperature input to the building (constant inlet temperature)

Equipment Required

- FEA Analysis on brackets and tensile testing machine required
- Hot wire anemometer (specifically built for HVAC testing)
- K-type thermocouples and DAQ software and program

Schedule & Budget

Total Budget Available: \$1,092 total

- \$500 provided by the Renewable Energy Lab
- \$500 provided by Home Depot Bill of materials
- \$92 dollars raised from GCB fundraising

Anticipated Expenses

- Roof mounting
- Ducts, insulation, Vents
- Electrical
- Misc

Tentative Budget Schedule

- BOM due 08/7/2025
- \$350 dollar remain
- Important dates 08/25, 10/16, 11/6

Summer Gantt Chart

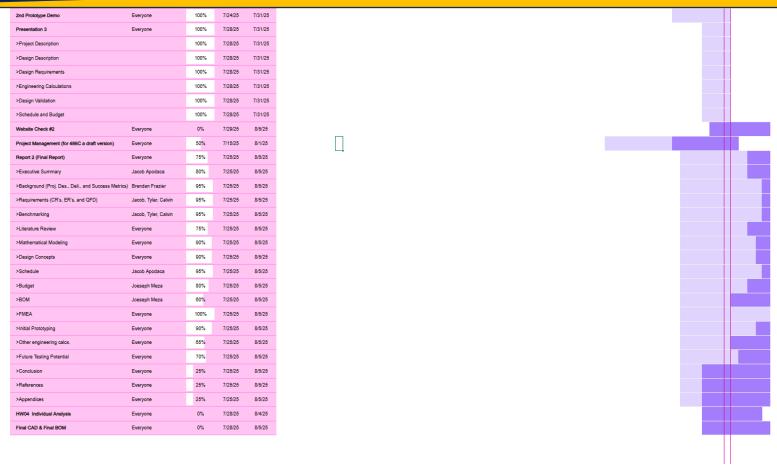


Figure 12: Summer Gantt Chart

Fall Gantt Chart

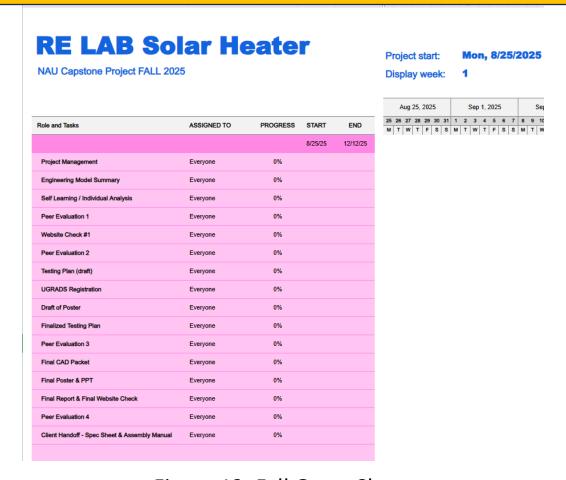


Figure 13: Fall Gantt Chart

References

- [1] N. Mendes, G. Oliveira, and H. De Araújo, "BUILDING THERMAL PERFORMANCE https://publications.ibbsa.org/proceedings/bs/2001/papers/bs2001_0473_480.pdf
- ANALYSIS BY USING MATLAB/SIMULINK." Accessed: Oct. 14, 2024. [Online]. Available:
- [2] Y. Choi, M. Mae, and H. Bae Kim, "Thermal performance improvement method for air-based solar heating systems," *Solar Energy*, vol. 186, pp. 277–290, Jul. 2019, doi: https://doi.org/10.1016/j.solener.2019.04.061.
- [3] C. Ghiaus and I. Hazyuk, "Calculation of optimal thermal load of intermittently heated buildings," *Energy and Buildings*, vol. 42, no. 8, pp. 1248–1258, Aug. 2010, doi: https://doi.org/10.1016/j.enbuild.2010.02.017.
- [4] A. Shukla, D. Buddhi, and R. L. Sawhney, "Solar water heaters with phase change material thermal energy storage medium: A review," *Renewable and Sustainable Energy Reviews*, vol. 13, no. 8, pp. 2119–2125, Oct. 2009, doi: https://doi.org/10.1016/j.rser.2009.01.024.
- [5] "How Does Central Heating and Cooling Work? Trane®," Trane Residential. https://www.trane.com/residential/en/buyers-guide/hvac-basics/how-does-a-central-heating-cooling-system-work/
- [6] Z. Liu et al., "Research on heating performance of heating radiator at low temperature," Journal of Building Engineering, vol. 36, p. 102016, Dec. 2020, doi: https://doi.org/10.1016/j.jobe.2020.102016.
- [7] "ASHRAE climatic design conditions 2009/2013/2017/2021," Ashrae-meteo.info, 2017. https://ashrae-meteo.info/v2.0/index.php?lat=35.13&lng=111.67&place=%27%27&wmo=723750&ashrae_version=2009 (accessed Jul. 15, 2025).
- [8] A. G. Safitra, L. Diana, F. H. Sholihah and C. P. Rahayu, "Experimental Analysis of Artificial Equilateral Triangle Solar Air Heater Using Zig-zag Channel," 2021 International Electronics Symposium (IES), Surabaya, Indonesia, 2021, pp. 494-498, doi: 10.1109/IES53407.2021.9593967. keywords: {Fluids;Shape;Solar radiation;Solar heating;Sun;Thermal energy;solar air heater;zig-zag;temperature;absorber;efficiency},
- [9] E. Engineeringtoolbox, "Absorbed solar radiation," Engineering ToolBox, https://www.engineeringtoolbox.com/solar-radiation-absorbed-materials-d_1568.html (accessed Jun. 18, 2025).
- [10] T. L. Bergman, Fundamentals of Heat and Mass Transfer, 8th Edition. New York: John Wiley & Sons, Incorporated, 2016.
- [11] M. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics Michel J. Moran; Howard N. Shapiro. Hauptbd. Hoboken, NJ: Wiley, 2010.
- [12] A. Kumar GB, S. Sushma, L. Priyanka, S. G. Vijay, and G. A. Thouqhir Pasha, "Design and implementation of peltier based solar powered air conditioning and water heating system," 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Empty (RTEICT), pp. 2604–2607, May 2018. doi:10.1109/rteict42901.2018.9012255

NORTHERN ARIZONA UNIVERSITY

References

- [13] A. S. Barrak, A. A. Saleh, and Z. H. Naji, "Energy saving of Air Conditioning System by oscillating heat pipe heat recovery using binary fluid," 2019 4th Scientific International Conference Najaf (SICN), pp. 178–183, Apr. 2019. doi:10.1109/sicn47020.2019.9019354
- [14] T. A. H. & Cooling, "What is an inverter heat pump: Temp Air," Temp Air System Inc., https://tempairsystem.com/everything-you-should-know-about-inverter-heat-pumps/ (accessed Jul. 15, 2025).
- [15] "What wavelength do solar panels use? the ultimate answer," ShopSolar.com, https://shopsolarkits.com/blogs/learning-center/what-wavelength-do-solar-panels-use (accessed Jul. 15, 2025).
- [16] "Solar Panel Cost Archives," Solar.com, https://www.solar.com/learn/solar-panel-cost/ (accessed Jul. 15, 2025).
- [17] "Learn about hybrid water heaters: Energy-efficient heating," Zenith, https://zenithheater.com/hybrid-water-heater/ (accessed Jul. 15, 2025).
- [18] "Fox and McDonald's introduction to Fluid Mechanics, 10th edition," Wiley.com, https://www.wiley.com/en-us/Fox+and+McDonald's+Introduction+to+Fluid+Mechanics,+10th+Edition-p-00045065 (accessed Jul. 15, 2025).
- [19] AbstractIn order to produce process heat for drying of agricultural et al., "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, https://www.sciencedirect.com/science/article/pii/S1364032111005971?casa_token=y4ukDCyMjl0AAAAA%3AaLc8CPpb1umrHvlMZkbuaOjsmbs68H8Wdr3GNQ1EYxejOayL9lxi8-gvTH4cLGfNrTefgK7HYPO (accessed Jul. 15, 2025).
- [20] D. W. U. Perera and N.-O. Skeie, "Estimation of the heating time of small-scale buildings using dynamic models," MDPI, https://www.mdpi.com/2075-5309/6/1/10 (accessed Jul. 15, 2025).
- [21] Pipe flow calculations, https://lin-web.clarkson.edu/projects/subramanian/ch330/notes/Pipe%20Flow%20Calculations.pdf (accessed Jul. 15, 2025).
- [22] "Solar Thermal Heating & Water Heating: How It Works," Solar Panels Plus, https://www.solarpanelsplus.com/all-about-solar/how-solar-heating-works/ (accessed Jul. 15, 2025).
- [23] "Solar water heaters," Energy.gov, https://www.energy.gov/energysaver/solar-water-heaters (accessed Jul. 15, 2025).
- [24] Rayzon Solar, Solar Thermal Energy System, https://rayzonsolar.com/blog/solar-thermal-energy-systems (accessed Jul. 15, 2025).
- [25] "Active solar heating," Energy.gov, https://www.energy.gov/energysaver/active-solar-heating (accessed Jul. 15, 2025).
- [26] "ThermoPowerTM 30 Tube Evacuated Tube Solar Collector," SunMaxx Solar Solar Hot Water Systems, Aug. 22, 2023.

NORTHERN ARIZONA UNIVERSITY

References

- [27] T. L. Bergman, "Chapter 12: Radiation," in Fundamentals of Heat and Mass Transfer, 8th Edition. New York: John Wiley & Sons, Incorporated, 2016.
- [28] R. S. Figliola, "Chapter 8: Temperature Measurements," in Theory And Design For Mechanical Measurements. S.L.: John Wiley, 2020.
- [29] A. I. Owaid, S. M. Hadi, M. S. Mahdi, Husam Sabeeh Al-arab, and H. I. Mohammed, "On-Grid Flat Plate Solar Water Heater Collector Application for Electrical Energy Saving Contribution," GAZI UNIVERSITY JOURNAL OF SCIENCE, Nov. 2024, doi: https://doi.org/10.35378/gujs.1463435.
- [30] S. K. Kutafa and A. M. A. Muhammed, "Study of the enhancement in the performance of a hybrid flat plate solar collector using water and air as working fluids," Heat Transfer, vol. 53, no. 6, pp. 2736–2748, Apr. 2024, doi: https://doi.org/10.1002/htj.23048.
- [31] S. A. Gandjalikhan Nassab, "Efficient design of converged ducts in solar air heaters for higher performance," Heat and Mass Transfer, Jul. 2022, doi: https://doi.org/10.1007/s00231-022-03228-9.
- [32] A. Robinson, "Solar PV Analysis of Flagstaff, United States," Profilesolar.com, Apr. 16, 2024. https://profilesolar.com/locations/United-States/Flagstaff/#google_vignette (accessed Jul. 08, 2025).
- [33] ASHRAE, "Standards and Guidelines," Ashrae.org, 2009. https://www.ashrae.org/technical-resources/standards-and-guidelines
- [34] S. Kraemer, "Rocks: The Unexpected Powerhouse of Sustainable Solar Energy Storage SolarPACES," SolarPACES, Jun. 11, 2023. https://www.solarpaces.org/rocks-the-unexpected-powerhouse-of-sustainable-solar-energy-storage/
- [35] "Solar Energy and Solar Power in Flagstaff, AZ," Solar Energy Local, 2025. https://www.solarenergylocal.com/states/arizona/flagstaff/
- [36] ASHRAE Handbook & Product Directory, 1980 Systems. 1980.
- [37] "4000 Series Solar Air Heater," Arctica Solar, 2022. https://www.arcticasolar.com/products/4000-series-solar-air-heater-gen-1 (accessed Jul. 14, 2025)...
- [38] "Solar Energy and solar power in Flagstaff, AZ," Solar Energy Local, https://www.solarenergylocal.com/states/arizona/flagstaff/ (accessed Jul. 30, 2025).
- [39] R. G. Budynas and J.K Nisbett, "Shigley's Mechanical Engineering Design" 10th Edition
- [40] "Flagstaff Snowfall Totals & Accumulation averages," Flagstaff AZ Snowfall Totals & Snow Accumulation Averages Current Results, https://www.currentresults.com/Weather/Arizona/Places/flagstaff-snowfall-totals-snow-accumulation-averages.php (accessed Jul. 30, 2025).
- [41] Windfinder.com, "Wind and weather statistic Flagstaff Pulliam Airport," Windfinder.com, https://www.windfinder.com/windstatistics/flagstaff (accessed Jul. 31, 2025).

NORTHERN ARIZONA UNIVERSITY

Thank You Questions?

ME 476C Capstone Project

Summer 2025

RE Lab Solar Heater

Jacob Apodaca

Brendan Frazier

Tyler Hedgecock

Joseph Meza

Calvin Schenkenberger

Northern Arizona University

Flagstaff, AZ 86001

Customer Requirements

Customer Requirement	Software Simulation	Mathematical Modeling	Physical Prototyping	CR Status
Reduce heat load by 30% in winter	$\overline{\checkmark}$	$\overline{\checkmark}$		Mostly Fulfilled
Operates in winter climate conditions	\checkmark	\checkmark	✓	Mostly Fulfilled
Use primarily solar energy	\bigotimes			Mostly Fulfilled
No major structural modifications	\checkmark	\checkmark	\times	Mostly Fulfilled
Comply with relevant codes	(\times)	\bigotimes	\times	Not Fulfilled
>4 hours of maintenance yearly	$\stackrel{\frown}{\times}$	\times	\times	Not Fulfilled
Must not cause building to overheat	$\overline{\times}$	$\overline{\times}$		Partially Fulfilled

Physical Prototyping

How does variable voltage affect flow rate?

 Approximately 20% drop in CFM for every 2 volts

Design Information

 Provide battery power to fans to ensure max operation and efficiency

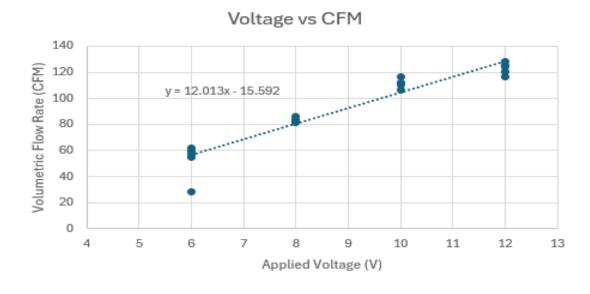
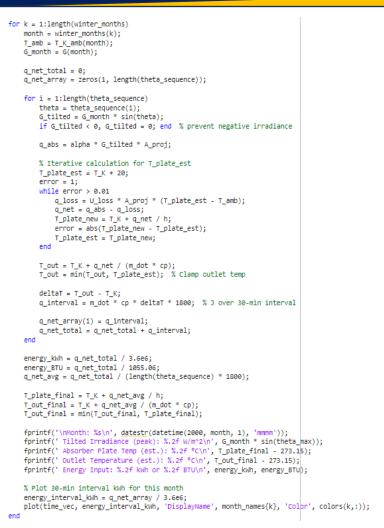



Figure 1: CFM Based on Applied Voltage

Energy Calculation: Dynamic Output

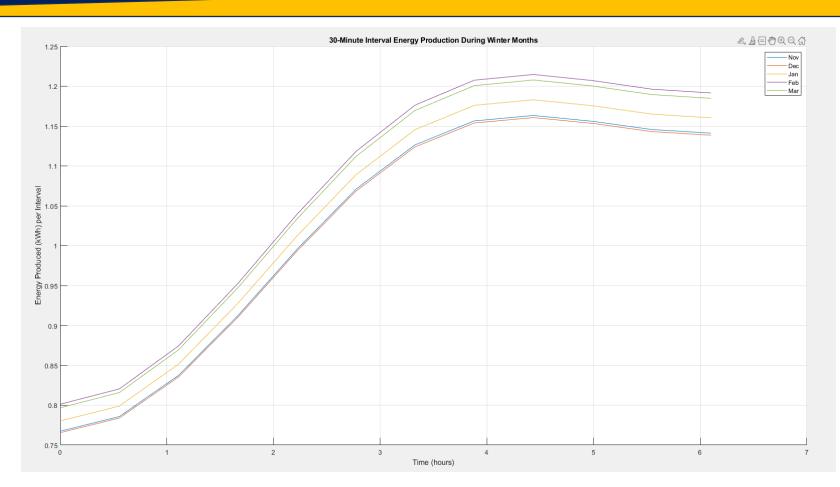


Figure 3: Dynamic Angle Energy Output

SolidWorks Flow Simulation

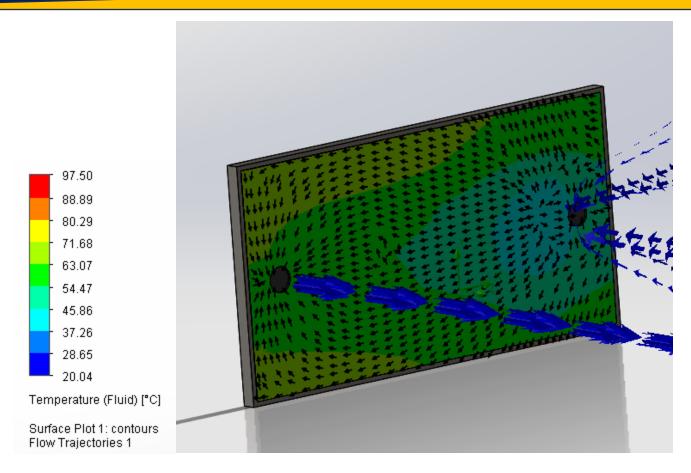


Figure 4: Air Collector Flow Simulation