Q V NORTHERN Department of Mechanical E?Ogljgoecera'ircliga
ARIZONA ME 476C - 001
UNIVERSITY

To: Dr. Carson Pete

From: Alonso Garcia

Date: 02/28/2025

Re: HW 3: Self-Learning

Introduction

This memo discusses what I learned from Arduino basic videos and Arduino application videos
for measuring data, and how I applied it to my capstone project. Learning Arduino is very
important to my capstone project, because our team will soon make a generator that needs to be
tested for voltage, current, torque, and RPM measured from the generator. These tests can be
done by getting a bunch of handheld sensors, but this wouldn't be easy to do when our
Dynamometer (Dyno) is spinning at high speeds that can be deadly, if the generator breaks off

from the Dyno. So, this design will help me improve my skill of software engineering.

Arduino Basics

After getting my certificate in “Arduino Programming for Kids and Beginners with Tinkercad” in
Appendix A.1, it taught me how to use the basic functions of an Arduino, like using digital
output, digital input, analog output, and analog input. With these, it allows data to pass to the
Arduino, so it can be programmed to do a certain task. For example, this course wanted me to
program with light-emitting diodes (LEDs), where it can turn on or off at any time I want. This is
useful for me because learning the basic template of the Arduino is the basis of this whole project.
Overall, this can be applied by making a template for any project to allow the code to compile.

Arduino Advanced Techniques

Another course I took was “Arduino Step by Step Getting Serious”. After getting the certificate, in
Appendix A.2, for this course, it taught me many technologies, like sensors, screens, and motors.
For this I focused more on screens and sensors, since this upcoming project will be grabbing data
and displaying it on a screen. This course used a graphics screen that is 128x64 and showed many
methods that the screen has to be able to display data to the screen from the Arduino. This will
be a key component for any upcoming projects that a user needs to see the displayed measured
data. With this, it is like a software to a user that is seeing this data.

Application

After learning and getting certificates from the previous courses above, my project I wanted to
make was creating a software that displays voltage, current, RPM, and torque.

I applied the information into a website called “Tinkercad”. This website is a virtual Arduino
simulator. With this, I chose an Arduino Uno, since this is the only one available. After choosing
my Arduino, I grabbed a power supply, which represents my team’s future generator outputting
voltage from the Dyno. Next, I chose a 4x16 liquid crystal display (LCD), which will display the
measured data. Sending current, torque, and RPM data is not possible within Tinkercad for my
situation. However, it can be setup in code, which can be seen in Appendix B.

Q V NORTH ERN Department of Mechanical E?O%jsnoeggrc'lig
ARIZONA ME 476C - 001
UNIVERSITY

After setting up the environment for Tinkercad, I can now set up the circuits for the Arduino to
read in data and write it back out as an output.

oG wo __

> - ‘
= mm ARDUINO

..........

. ~

Figure 1 — Schematic of Arduino and circuits

In Figure 1, a schematic of all the parts is connected to the Arduino. The LCD screen is connected
by many pins, where it allows altering data to the LCD screen. The power supply will represent
the generator providing power when it’s applied to the Dyno and changed from AC to DC. The
power supply is supplying voltage to a voltage divider, which will be explained later. After all
the wires are in their respective spots, it can be initialized to start displaying data.

LCD Screen

Rl In Figure 2, it is shown that constants are
// Pins defined for the LCD screen. These are
#define RS 12 // Register Select .
#define E 11 // Enable constants to make the code easier to read and
#define D4 5 // Decibel 4 4 3 H
e oty) peee t allow modularity. For ex,ample, if pins need
#define D6 3 // Decibel 6 to be changed, you don’t have to struggle

fastine BT T A/ pecibet 7 finding it throughout the code when they’re
all together. In the three subsections, there is

// Screen Size
#define COLUMNS 16

#define ROWS 2 pin constants that define the pins on the
/7 units Arduino, screen size that defines the size of
o et the screen, and units that defines all the type
#define RPM UNIT "RPM" 1 L3

e of units for a specific measurement.

Figure 2 — LCD screen constants

Department of Mechanical Engineering
Alonso Garcia
ME 476C - 001

NORTHERN

%

ARIZONA
UNIVERSITY

// LCD Screen
LiquidCrystal LCD_Screen(RS, E, D4, D5, D6, D7);

void initializeLCDScreen();

void printMeasurement();
void clearLCDLine(int line);

Figure 3 — LCD screen variables and
functions

Voltage Measuring

// Voltage measuring

// Pin
#define VOLTAGE_ANALOG_PIN A0

// Attribute
#define REFERENCE_VOLTAGE 5000.0 // mV (ACTUALLY CHECK FOR REFERENCE)

Figure 4 — Voltage measuring constants

// Voltage

int multiplier = 10;

float totalVoltage;

void initializeVoltageInput();
void calculateVoltage();

float getVoltageInput(int pinNumber); // Current also uses this
float digitalToAnalogConverter(int count); // Current also uses this

Figure 5 — Voltage measuring variables and
functions

In Figure 3, it shows the variables and
functions related to the LCD screen.
LCD_Screen is the actual object of the screen,
where it can be wused to display.
InitializeLCDScreen() initializes the screen
to properly display. printMeasurement()
prints a measurement, like voltage, current,
RPM, or torque, depending on the specific
display number. Lastly, clearLCDLine()
clears a specific line on the LCD screen.

In Figure 4, it shows the constants for voltage
measuring. The first constant is defining the
pin number in which the pin will receive the
voltage. The reference voltage is referring to
how much voltage is being sent to the whole
circuit. It is set to 5 V, but this simulator in
Tinkercad is assuming it’s in an ideal world,
that’s why we can assume 5 V. So, once this
Arduino is assembled, I have to measure the
reference voltage to get accurate readings.

In Figure 5, it shows variables and functions
relating to voltage measuring. The variables
multiplier and totalVoltage are related since
the Arduino can only take 5 V max. The
multiplier multiplies the voltage input and
sets it into totalVoltage, which is then
displayed. initializeVoltageInput() initializes
the voltage measuring procedure by
allowing the analog pin to read the voltage.
The last three functions will be explained in
depth as it contains many layers.

The last three functions are key components in finding voltage. As explained before, the Arduino
can only take 5 V in the analog pins, otherwise it will be damaged. So, this is done by creating a
voltage divider, which can be seen in Figure 1 near the right side. The top resistor is 9 kiloohms
and the bottom resistor is 1 kiloohm. With this, this will make the input voltage be a tenth of the

source voltage due to the equation

R
Vout = Vin (ﬁ) (1)

Alonso Garcia

ARIZONA ME 476C - 001
UNIVERSITY

QV NORTH ERN Department of Mechanical Engineerin.g

The output voltage is the input voltage to the Arduino in this case. After getting the input voltage,
the function calculateVoltage() starts the converting process since the Arduino turns the analog
voltage to digital “voltage” that ranges from 0 to 1023. This is done by calling getVoltageInput()
and once we get the digital “voltage”, then digitalToAnalogConverter() is called. This then turns
the digital “voltage” into analog voltage, which should be 3 V. After all of these processes are
done, the value is then multiplied by the multiplier explained before. In this case, it’s 10 since we
provided a tenth of the source voltage to the Arduino. Now, we have a total voltage that can be
displayed to the LCD screen.

Figure 6 — Sequence of Arduino simulation

In Figure 6, it shows a sequence of what happens when the Arduino is turned on. As you can see
in the power supply in the top right, we get the same value in the LCD screen, which means the
calculations and reading is accurate and correct.

After viewing the sequence in Figure 6, I now have an implementation of measuring voltage for
my capstone project, the generator, to test how much voltage is being sent from the generator.

Conclusion

In conclusion, learning the courses “Arduino Step by Step Getting Serious” and “Arduino
Programming for Kids and Beginners with Tinkercad”, taught me how to use an Arduino’s
functionalities and come up with my own project that will help with my capstone project’s
testing. With these skills, I applied it by making a schematic that simulates an Arduino measuring
voltage from a power supply, which will be replaced with generator output. The results were that
the amount of voltage supplied from the power supply was successfully displayed by using a
voltage divider and conversions to get the total voltage. When I have an actual generator in a
Dyno, it'll be able to measure the output voltage of the generator correctly. The last step when I
apply this is making sure to check the reference voltage. This overall experience taught me a new
skill of using an Arduino, which is important because testing our designs will require automation,
which then makes everything less time consuming, efficient, and convenient.

Q V NORTH ERN Department of Mechanical E?Ogjgoecera'ircliga
ARIZONA ME 476C - 001
UNIVERSITY

Appendix
1

udemy

CERTIFICATE OF COMPLETION

Arduino Programming for
Kids and Beginners with
Tinkercad

Instructors Eshgin Guluzade

Alonso Baltazar Garcia

Date Feb. 28,2025
Length 6.5 total hours

udemy

CERTIFICATE OF COMPLETION

Arduino Step by Step
Getting Serious

Instructors Dr. Peter Dalmaris

Alonso Baltazar Garcia

Date Feb. 28,2025
Length 41 total hours

NORTHERN
ARIZONA
UNIVERSITY

// Libraries
#include <LiquidCrystalh> / / For displaying LCD screen

// Constants

// LCD screen

/[Pins
#define RS 12 / / Register Select
#define E 11 // Enable
#define D45 // Decibel 4
#define D54 // Decibel 5
#define D63 // Decibel 6
#define D77 // Decibel 7
/| Screen Size
#define COLUMNS 16
#define ROWS 2
// Units
#define VOLTAGE_UNIT "V"
#define CURRENT_UNIT "A"

#define RPM_UNIT "RPM"
#define TORQUE_UNIT "N-m"

// IR sensor
/[Pin
#define IR_PIN 2

/[Voltage measuring

/1 Pin
#define VOLTAGE_ANALOG_PIN A0
/[Attribute

#define REFERENCE_VOLTAGE 5000.0 / / mV (ACTUALLY CHECK FOR REFERENCE)

/[Current Sensor

// Pin
#define CURRENT_ANALOG_PIN Al

// Attribute
#define SENSITIVITY 0.185

// Other

#define DELAY_TIME 500 / / ms

#define ADC_RESOLUTION 1024
#define BUTTON_PIN 8

#define VOLTAGE_PER_COUNT REFERENCE_VOLTAGE / ADC_RESOLUTION

#define DECIMAL_PLACES 3 // Arduino only allows 6 decimal places before it's followed by zeros

// Initialize variables and functions for

// LCD Screen
LiquidCrystal LCD_Screen(RS, E, D4, D5, D6, D7);

void initializeLCDScreen();
void printMeasurement();
void clearLCDLine(int line);

/1 Voltage
int multiplier = 10;
float totalVoltage;

void initializeVoltageInput();

void calculateVoltage();

float getVoltagelnput(int pinNumber); / / Current also uses this
float digital ToAnalogConverter(int count); / / Current also uses this

/[Current Sensor
void initializeCurrentInput();
void calculateCurrent();

// IR Sensor
unsigned int rpm = 0;
int PPR=1; / / Pulse per rotation

volatile unsigned int counter = 0; // Counter variable for revolutions
unsigned long previousMillis = millis();

void calculateRP?
void IRinterrupt();

void initializeRPMInput();
M();

/ Button

int previousButtonState = 0;

unsigned long debounceDuration = 50; / / ms
unsigned long previousButtonPressMillis = millis();
bool buttonWasPressed();

void initializeButtonInput();

void checkForButtonPress();

// Other
int displayNum = 0;

void calculateMeasurement();
bool buttonWasPressed() {

int buttonState;

if (millis() - previousButtonPressMillis >= debounceDuration) {
buttonState = digitalRead(BUTTON_PIN);
if (buttonState != previousButtonState) {

previousButtonPressMillis = millis();
previousButtonState = buttonState;
return buttonState == HIGH;
1
)

return false;

Department of Mechanical Engineering
Alonso Garcia
ME 476C - 001

}
void checkForButtonPress() {
if (buttonWasPressed()) {
displayNum++;
clearLCDLine(1);
)
}
void calculateMeasurement()
switch (displayNum % 3) {

case 0:
calculateVoltage();
by

case 1:
calculateCurrent();
break:

case2:
calculateRPM();
break;

}

void setup() {

initializel CDScreen();

initializeCurrentInput();
initializeRPMInput();

}

void loop() {
checkForButtonPress();

calculateMeasurement();

wvoid initializeLCDScreen() {

// Initialize LCD screen size

NORTHERN
ARIZONA
UNIVERSITY

LCD_Screen.begin(COLUMNS, ROWS);

LCD_Screen.setCursor(0, 0);

LCD_Screen.print("25' CWC GEN");
}

void initializeVoltageInput()

{
pinMode(VOLTAGE_ANALOG_PIN, INPUT);
}

void initializeCurrentinput() {

pinMode(CURRENT_ANALOG_PIN, INPUT);
}

void initializeButtonInput()

{
pinMode(BUTTON_PIN, INPUT);
}

wvoid initializeRPMInput

put() {
pinMode(IR_PIN, INPUT_PULLUP);
attachnterrupt(digitalPinTolnterrupt(IR_PIN), IRinterrupt, FALLING);
}

void calculateVoltage() {

float voltageln = getVoltageInput(VOLTAGE_ANALOG_PIN);

totalVoltage = (voltageIn * multiplier) / 1000;

printMeasurement(totalVoltage, VOLTAGE_UNIT);
}

wvoid calculateCurrent() {

float voltageln = getVoltageInput(CURRENT_ANALOG_PIN);

float current = (voltageln - 2.5) / SENSITIVITY;

printMeasurement(current, CURRENT_UNIT);
}

void calculateRPM() {

unsigned long currentMillis = millis();

printMeasurement(rpm, RPM_

UNIT);

if (currentMillis - previousMillis >= 1000) {
etachInterrupt(dlgxtall’mToIn!errup((IR PIN));
m = (counter / PPR) * 60; // Calculate RPM

counter =0;

attachln!errup((dlglLaIPmToImenupt(IR PIN), IRinterrupt, FALLING);

previousMillis = currentMillis;
}

}

float getVoltageInput(int pinNumber) {

int count = analogRead(pinNumber);

return digital ToAnalogConverter(count);

}

float digital ToAnalogConverter(int count) {

return count * VOLTAGE_PER_COUNT;

}

void printMeasurement(float value, String unit) {

int stringLength = unit.length();

int cursorPosition = COLUMNS -

LCD_Screen.setCursor(0, 1);

stringLength;

)
LCD_Screen print(value, DECIMAL_PLACES);
LCD_Screen.setCursor(cursorPosition, 1);

LCD_Screen.print(unit);
}

void IRinterrupt() {
counter++;

void clearLCDLine(int line)

LCD_Screen.setCursor(0 line
for(int n = 0; n < COLUMNS;

LCD_Screen.print(" ");

)

o)

Department of Mechanical Engineering

Alonso Garcia
ME 476C - 001

Q V NORTHERN Department of Mechanical E?Ogrjgoecera'irclig
ARIZONA ME 476C - 001
UNIVERSITY

References

[1] A. Cartwright, “TUTORIAL: How to Measure / Read Voltages Into Arduino - (Part 3/3
Voltage Dividers - Analogue),” YouTube,
https:/ /www.youtube.com/watch?v=ZN5L6vdmi9s&list=PL6KWrulnEuZMvh1rJ8nKZ
DfaliGZXZyrd&index=3 (accessed Feb. 28, 2025).

[2] A. Cartwright, “TUTORIAL: How to Measure / Read Voltages Into Arduino - (Part 2/3
Voltage Dividers),” YouTube,
https:/ / www.youtube.com /watch?v=hixEGmf1y5c&list=PL6KWrulnEuZMvh1rJ8nKZD
faliGZXZyrd (accessed Feb. 28, 2025).

[3] A. Cartwright, “TUTORIAL: How to Measure / Read Voltages Into Arduino - (Part 1/3
Voltages Less than 5v),” YouTube,
https:/ / www.youtube.com/watch?v=lec7kPv3VS8&list=PL6KWrulnEuZMvh1rJ8nKZDf
aliGZXZyrd&index=1 (accessed Feb. 28, 2025).

[4] P. Dalmaris, “Arduino step by step getting serious | Udemy,” Udemy,
https:/ /www.udemy.com/ course / arduino-sbs-getting-serious/ (accessed Feb. 28, 2025).

[5] E. Guluzade, “Arduino programming for kids and beginners with Tinkercad | Udemy,”
Udemy, https:/ / www.udemy.com/course /arduino-programming-for-kids-and-
beginners-with-tinkercad / (accessed Feb. 28, 2025).

