
 Department of Mechanical Engineering 
 Alonso Garcia 

ME 476C - 001 
 

 
 
 

  

 

 
To: Dr. Carson Pete 
 
From: Alonso Garcia  
 
Date: 02/28/2025 
 
Re: HW 3: Self-Learning 
 
Introduction 
 
This memo discusses what I learned from Arduino basic videos and Arduino application videos 
for measuring data, and how I applied it to my capstone project. Learning Arduino is very 
important to my capstone project, because our team will soon make a generator that needs to be 
tested for voltage, current, torque, and RPM measured from the generator. These tests can be 
done by getting a bunch of handheld sensors, but this wouldn’t be easy to do when our 
Dynamometer (Dyno) is spinning at high speeds that can be deadly, if the generator breaks off 
from the Dyno. So, this design will help me improve my skill of software engineering. 
 
Arduino Basics 
 
After getting my certificate in “Arduino Programming for Kids and Beginners with Tinkercad” in 
Appendix A.1, it taught me how to use the basic functions of an Arduino, like using digital 
output, digital input, analog output, and analog input. With these, it allows data to pass to the 
Arduino, so it can be programmed to do a certain task. For example, this course wanted me to 
program with light-emitting diodes (LEDs), where it can turn on or off at any time I want. This is 
useful for me because learning the basic template of the Arduino is the basis of this whole project. 
Overall, this can be applied by making a template for any project to allow the code to compile. 
 
Arduino Advanced Techniques 
 
Another course I took was “Arduino Step by Step Getting Serious”. After getting the certificate, in 
Appendix A.2, for this course, it taught me many technologies, like sensors, screens, and motors. 
For this I focused more on screens and sensors, since this upcoming project will be grabbing data 
and displaying it on a screen. This course used a graphics screen that is 128x64 and showed many 
methods that the screen has to be able to display data to the screen from the Arduino. This will 
be a key component for any upcoming projects that a user needs to see the displayed measured 
data. With this, it is like a software to a user that is seeing this data. 
 
Application 
 
After learning and getting certificates from the previous courses above, my project I wanted to 
make was creating a software that displays voltage, current, RPM, and torque.  
 
I applied the information into a website called “Tinkercad”. This website is a virtual Arduino 
simulator. With this, I chose an Arduino Uno, since this is the only one available. After choosing 
my Arduino, I grabbed a power supply, which represents my team’s future generator outputting 
voltage from the Dyno. Next, I chose a 4x16 liquid crystal display (LCD), which will display the 
measured data. Sending current, torque, and RPM data is not possible within Tinkercad for my 
situation. However, it can be setup in code, which can be seen in Appendix B. 



 Department of Mechanical Engineering 
 Alonso Garcia 

ME 476C - 001 
 

 
 
 

  

 

After setting up the environment for Tinkercad, I can now set up the circuits for the Arduino to 
read in data and write it back out as an output. 
 

 
 

Figure 1 – Schematic of Arduino and circuits 
 
In Figure 1, a schematic of all the parts is connected to the Arduino. The LCD screen is connected 
by many pins, where it allows altering data to the LCD screen. The power supply will represent 
the generator providing power when it’s applied to the Dyno and changed from AC to DC. The 
power supply is supplying voltage to a voltage divider, which will be explained later. After all 
the wires are in their respective spots, it can be initialized to start displaying data. 
 
LCD Screen 
 

 
 

Figure 2 – LCD screen constants 

In Figure 2, it is shown that constants are 
defined for the LCD screen. These are 
constants to make the code easier to read and 
allow modularity. For example, if pins need 
to be changed, you don’t have to struggle 
finding it throughout the code when they’re 
all together. In the three subsections, there is 
pin constants that define the pins on the 
Arduino, screen size that defines the size of 
the screen, and units that defines all the type 
of units for a specific measurement. 
 
 

 
 
 



 Department of Mechanical Engineering 
 Alonso Garcia 

ME 476C - 001 
 

 
 
 

  

 

 
 
 
 
 
 
 
 

 
 

Figure 3 – LCD screen variables and 
functions 

 
 
 
 
In Figure 3, it shows the variables and 
functions related to the LCD screen. 
LCD_Screen is the actual object of the screen, 
where it can be used to display. 
InitializeLCDScreen()  initializes the screen 
to properly display. printMeasurement() 
prints a measurement, like voltage, current, 
RPM, or torque, depending on the specific  
display number. Lastly, clearLCDLine() 
clears a specific line on the LCD screen.

 
Voltage Measuring 
 
 
 

 
 

Figure 4 – Voltage measuring constants 
 
 
 
 
 
 

 
 

Figure 5 – Voltage measuring variables and 
functions 

 
 
 

 
In Figure 4, it shows the constants for voltage 
measuring. The first constant is defining the 
pin number in which the pin will receive the 
voltage. The reference voltage is referring to 
how much voltage is being sent to the whole 
circuit. It is set to 5 V, but this simulator in 
Tinkercad is assuming it’s in an ideal world, 
that’s why we can assume 5 V. So, once this 
Arduino is assembled, I have to measure the 
reference voltage to get accurate readings. 
 
In Figure 5, it shows variables and functions 
relating to voltage measuring. The variables 
multiplier and totalVoltage are related since 
the Arduino can only take 5 V max. The 
multiplier multiplies the voltage input and 
sets it into totalVoltage, which is then 
displayed. initializeVoltageInput() initializes 
the voltage measuring procedure by 
allowing the analog pin to read the voltage. 
The last three functions will be explained in 
depth as it contains many layers. 
 

The last three functions are key components in finding voltage. As explained before, the Arduino 
can only take 5 V in the analog pins, otherwise it will be damaged. So, this is done by creating a 
voltage divider, which can be seen in Figure 1 near the right side. The top resistor is 9 kiloohms 
and the bottom resistor is 1 kiloohm. With this, this will make the input voltage be a tenth of the 
source voltage due to the equation 
 

𝑉!"# = 𝑉$%(
&!

&"'&!
)          (1)



 Department of Mechanical Engineering 
 Alonso Garcia 

ME 476C - 001 
 

 
 
 

  

 

 
The output voltage is the input voltage to the Arduino in this case. After getting the input voltage, 
the function calculateVoltage() starts the converting process since the Arduino turns the analog 
voltage to digital “voltage” that ranges from 0 to 1023. This is done by calling getVoltageInput() 
and once we get the digital “voltage”, then digitalToAnalogConverter() is called. This then turns 
the digital “voltage” into analog voltage, which should be 3 V. After all of these processes are 
done, the value is then multiplied by the multiplier explained before. In this case, it’s 10 since we 
provided a tenth of the source voltage to the Arduino. Now, we have a total voltage that can be 
displayed to the LCD screen. 
 

 
 

Figure 6 – Sequence of Arduino simulation 
 
In Figure 6, it shows a sequence of what happens when the Arduino is turned on. As you can see 
in the power supply in the top right, we get the same value in the LCD screen, which means the 
calculations and reading is accurate and correct. 
 
After viewing the sequence in Figure 6, I now have an implementation of measuring voltage for 
my capstone project, the generator, to test how much voltage is being sent from the generator. 
 
Conclusion 
 
In conclusion, learning the courses “Arduino Step by Step Getting Serious” and “Arduino 
Programming for Kids and Beginners with Tinkercad”, taught me how to use an Arduino’s 
functionalities and come up with my own project that will help with my capstone project’s 
testing. With these skills, I applied it by making a schematic that simulates an Arduino measuring 
voltage from a power supply, which will be replaced with generator output. The results were that 
the amount of voltage supplied from the power supply was successfully displayed by using a 
voltage divider and conversions to get the total voltage. When I have an actual generator in a 
Dyno, it’ll be able to measure the output voltage of the generator correctly. The last step when I 
apply this is making sure to check the reference voltage. This overall experience taught me a new 
skill of using an Arduino, which is important because testing our designs will require automation, 
which then makes everything less time consuming, efficient, and convenient.



 Department of Mechanical Engineering 
 Alonso Garcia 

ME 476C - 001 
 

 
 
 

  

 

Appendix 
 
A.1 
 

 
 
 
A.2 
 



 Department of Mechanical Engineering 
 Alonso Garcia 

ME 476C - 001 
 

 
 
 

  

 

B 
 
// Libraries 
#include <LiquidCrystal.h> // For displaying LCD screen 
 
 
// Constants 
 
  // LCD screen 
 
    // Pins 
    #define RS 12 // Register Select 
    #define E 11  // Enable 
    #define D4 5  // Decibel 4 
    #define D5 4  // Decibel 5 
    #define D6 3  // Decibel 6 
    #define D7 7  // Decibel 7 
 
    // Screen Size 
    #define COLUMNS 16 
    #define ROWS 2 
 
 // Units 
 #define VOLTAGE_UNIT "V" 
 #define CURRENT_UNIT "A" 
 #define RPM_UNIT "RPM" 
 #define TORQUE_UNIT "N-m" 
 
 
 
  // IR sensor 
 
    // Pin 
    #define IR_PIN 2 
 
 
 
  // Voltage measuring 
 
    // Pin 
    #define VOLTAGE_ANALOG_PIN A0 
     
    // Attribute 
    #define REFERENCE_VOLTAGE 5000.0 // mV (ACTUALLY CHECK FOR REFERENCE) 
 
 
 
  // Current Sensor 
 
 // Pin 
 #define CURRENT_ANALOG_PIN A1 
 
 // Attribute 
 #define SENSITIVITY 0.185 
 
 
 
  // Other 
    #define DELAY_TIME 500 // ms 
    #define ADC_RESOLUTION 1024 
 #define BUTTON_PIN 8 
 
#define VOLTAGE_PER_COUNT REFERENCE_VOLTAGE / ADC_RESOLUTION 
 
#define DECIMAL_PLACES 3 // Arduino only allows 6 decimal places before it's followed by zeros 
 
 
// Initialize variables and functions for 
 
  // LCD Screen 
  LiquidCrystal LCD_Screen( RS, E, D4, D5, D6, D7 ); 
 
  void initializeLCDScreen(); 
  void printMeasurement(); 
  void clearLCDLine(int line); 
 
 
  // Voltage 
  int multiplier = 10; 
  float totalVoltage; 
 
  void initializeVoltageInput(); 
  void calculateVoltage(); 
  float getVoltageInput( int pinNumber ); // Current also uses this 
  float digitalToAnalogConverter( int count ); // Current also uses this 
 
 
  // Current Sensor 
  void initializeCurrentInput(); 
  void calculateCurrent(); 
 
 
  // IR Sensor 
  unsigned int rpm = 0; 
  int PPR=1; // Pulse per rotation 
  volatile unsigned int counter = 0;  // Counter variable for revolutions 
  unsigned long previousMillis = millis(); 
 
  void initializeRPMInput(); 
  void calculateRPM(); 
  void IRinterrupt(); 
   
   
  // Button 
  int previousButtonState = 0; 
  unsigned long debounceDuration = 50; // ms 
  unsigned long previousButtonPressMillis = millis(); 
 
  bool buttonWasPressed(); 
  void initializeButtonInput(); 
  void checkForButtonPress(); 
 
  // Other 
  int displayNum = 0; 
 
  void calculateMeasurement(); 
 
bool buttonWasPressed() { 
  
  int buttonState; 
   
  if ( millis() - previousButtonPressMillis >= debounceDuration ) { 
    
    buttonState = digitalRead( BUTTON_PIN ); 
     
    if ( buttonState != previousButtonState ) { 
     
       previousButtonPressMillis = millis(); 
       previousButtonState = buttonState; 
       
     return buttonState == HIGH; 
    } 
  } 
   
  return false;



 Department of Mechanical Engineering 
 Alonso Garcia 

ME 476C - 001 
 

 
 
 

  

 

 
} 
 
void checkForButtonPress() { 
  if ( buttonWasPressed() ) { 
    displayNum++; 
    clearLCDLine( 1 ); 
  } 
} 
 
void calculateMeasurement() { 
  switch ( displayNum % 3 ) { 
     
    case 0: 
      calculateVoltage(); 
      break; 
 
    case 1: 
      calculateCurrent(); 
      break; 
 
    case 2: 
      calculateRPM(); 
      break; 
  } 
} 
 
void setup() { 
   
  initializeLCDScreen(); 
  initializeButtonInput(); 
  initializeVoltageInput(); 
  initializeCurrentInput(); 
  initializeRPMInput(); 
} 
 
void loop() { 
   
  checkForButtonPress(); 
   
  calculateMeasurement(); 
} 
 
void initializeLCDScreen() { 
   
  // Initialize LCD screen size 
  LCD_Screen.begin( COLUMNS, ROWS ); 
  LCD_Screen.setCursor( 0, 0 ); 
  LCD_Screen.print( "25' CWC GEN" ); 
} 
 
void initializeVoltageInput() { 
  pinMode(VOLTAGE_ANALOG_PIN, INPUT); 
} 
 
void initializeCurrentInput() { 
  pinMode(CURRENT_ANALOG_PIN, INPUT); 
} 
 
void initializeButtonInput() { 
  pinMode(BUTTON_PIN, INPUT); 
} 
 
void initializeRPMInput() { 
  pinMode(IR_PIN, INPUT_PULLUP); 
  attachInterrupt(digitalPinToInterrupt(IR_PIN), IRinterrupt, FALLING); 
} 
 
void calculateVoltage() { 
   
  float voltageIn = getVoltageInput( VOLTAGE_ANALOG_PIN ); 
   
  totalVoltage = ( voltageIn * multiplier ) / 1000; 
   
  printMeasurement( totalVoltage, VOLTAGE_UNIT ); 
} 
 
void calculateCurrent() { 
   
  float voltageIn = getVoltageInput( CURRENT_ANALOG_PIN ); 
   
  float current = ( voltageIn - 2.5 ) / SENSITIVITY; 
   
  printMeasurement( current, CURRENT_UNIT ); 
} 
 
void calculateRPM() { 
  
  unsigned long currentMillis = millis(); 
   
  printMeasurement( rpm, RPM_UNIT ); 
   
  if (currentMillis - previousMillis >= 1000) { 
    detachInterrupt(digitalPinToInterrupt(IR_PIN)); 
    rpm = (counter / PPR) * 60;  // Calculate RPM 
    counter = 0; 
    attachInterrupt(digitalPinToInterrupt(IR_PIN), IRinterrupt, FALLING); 
    previousMillis = currentMillis; 
  } 
} 
 
float getVoltageInput( int pinNumber ) { 
   
  int count = analogRead( pinNumber ); 
   
  return digitalToAnalogConverter( count ); 
   
} 
 
float digitalToAnalogConverter( int count ) { 
   
 return count * VOLTAGE_PER_COUNT; 
   
} 
 
void printMeasurement( float value, String unit ) { 
   
  int stringLength = unit.length(); 
  int cursorPosition = COLUMNS - stringLength; 
   
  LCD_Screen.setCursor( 0, 1 ); 
  LCD_Screen.print( value, DECIMAL_PLACES ); 
  LCD_Screen.setCursor( cursorPosition, 1 ); 
  LCD_Screen.print( unit ); 
   
} 
 
void IRinterrupt() { 
    counter++; 
} 
 
void clearLCDLine(int line) 
{                
        LCD_Screen.setCursor( 0,line ); 
        for( int n = 0; n < COLUMNS; n++ ) 
        { 
                LCD_Screen.print(" "); 
        } 
}



 Department of Mechanical Engineering 
 Alonso Garcia 

ME 476C - 001 
 

 
 
 

  

 

References 

[1] A. Cartwright, “TUTORIAL: How to Measure / Read Voltages Into Arduino - (Part 3/3 
Voltage Dividers - Analogue),” YouTube, 
https://www.youtube.com/watch?v=ZN5L6vdmi9s&list=PL6KWru1nEuZMvh1rJ8nKZ
Dfa1iGZXZyrd&index=3 (accessed Feb. 28, 2025).  

[2] A. Cartwright, “TUTORIAL: How to Measure / Read Voltages Into Arduino - (Part 2/3 
Voltage Dividers),” YouTube, 
https://www.youtube.com/watch?v=hixEGmf1y5c&list=PL6KWru1nEuZMvh1rJ8nKZD
fa1iGZXZyrd (accessed Feb. 28, 2025).  

[3] A. Cartwright, “TUTORIAL: How to Measure / Read Voltages Into Arduino - (Part 1/3 
Voltages Less than 5v),” YouTube, 
https://www.youtube.com/watch?v=lec7kPv3VS8&list=PL6KWru1nEuZMvh1rJ8nKZDf
a1iGZXZyrd&index=1 (accessed Feb. 28, 2025).  

[4] P. Dalmaris, “Arduino step by step getting serious | Udemy,” Udemy, 
https://www.udemy.com/course/arduino-sbs-getting-serious/ (accessed Feb. 28, 2025).  

[5] E. Guluzade, “Arduino programming for kids and beginners with Tinkercad | Udemy,” 
Udemy, https://www.udemy.com/course/arduino-programming-for-kids-and-
beginners-with-tinkercad/ (accessed Feb. 28, 2025).  

 


