Project 11: Arm Exoskeleton

Michael Marchica

Colin Cipolla

Michael George

Dylan Kurz

Jordan Finger


Photo Provided By: ETH Zurich

P11 Robotic Arm Exoskeleton

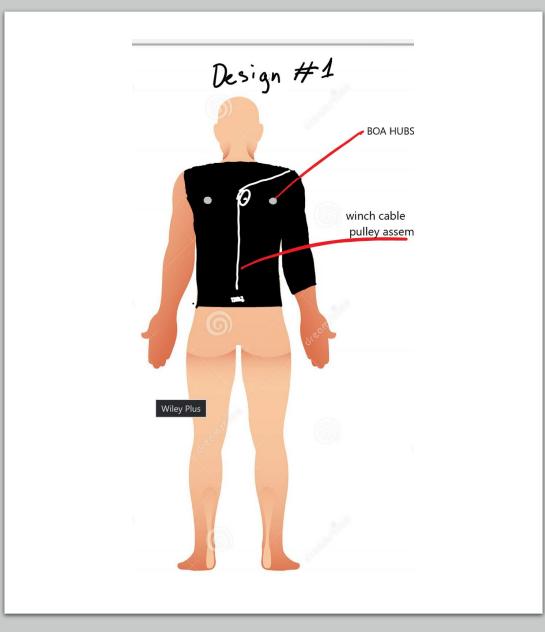
Description of Project

- To design and improve upon the upper body arm exoskeleton called the Myoshirt, designed by ETH Zürich. The suit will assist the user's task of completing pull-ups and other daily activities.
 - Increase the number of pull-ups by 20%.
 - Lightweight: Must be < 6lbs
 - Low profile: Cannot extrude >10 cm off the body.
- Client: Dr. Zachary Lerner
- Sponsor: W.L. Gore
 - Budget: \$3,750

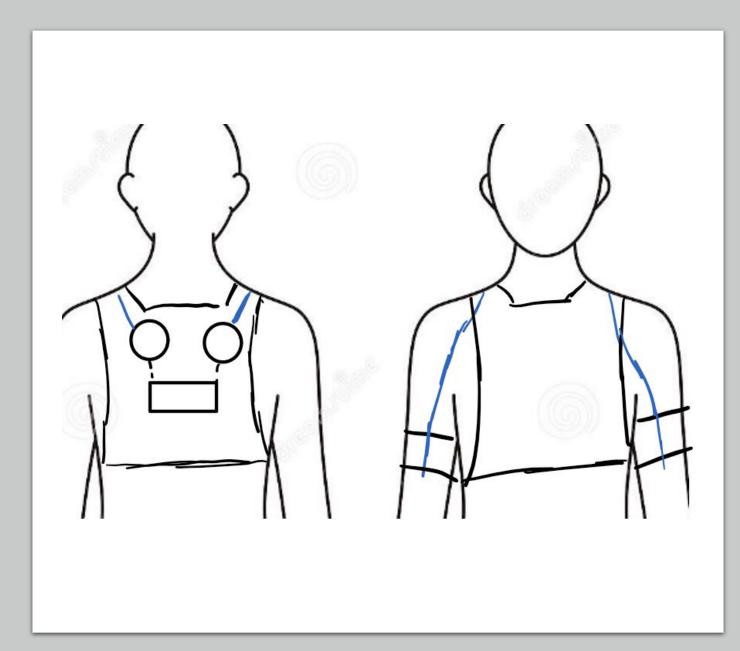
Photo provided by: ETH Zurich

Inputs:		Function:		Outputs:
Pull-up Bar (Solid)	>		>	Pull-up Bar (Solid)
	>		>	
Gravity (PE)	>		>	
Battery Energy (Electrical Energy)	>	Increase the amount of	>	Waste Energy (Thermal Energy)
Ground/Bar Forces (Mechanical Energy)	>	pull-ups someone can	>	Ground/Bar Forces (Mechanical Energy)
Actuation (Mechanical & Electrical Energy)	>	do by 20% when wearing	>	
	>	the exomuscle suit	>	
Operator Input (Control)	>		>	Operator Status (Control)
ON/OFF Switch	>		>	ON/OFF Switch
Analog signals (Lights)	>		>	Analog signals (Lights)

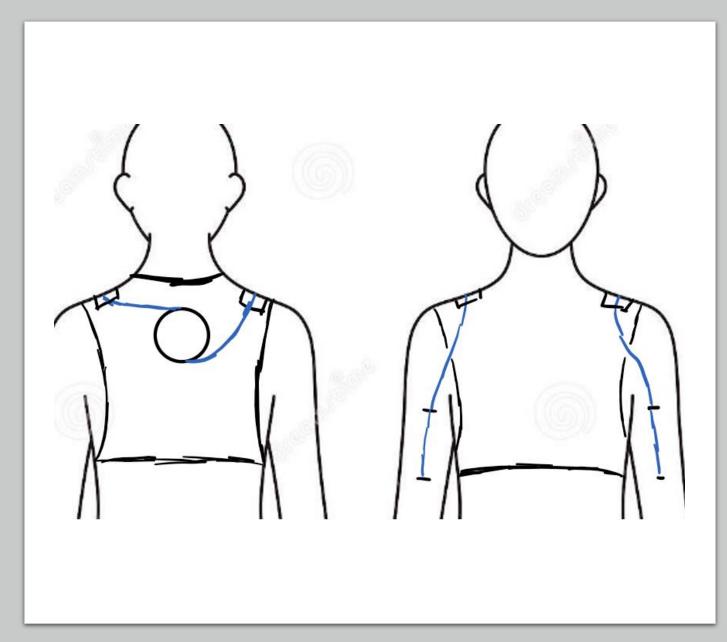
Black Box Model


• Aid in Concept Generation:

- View on different forces within the system
 - Allows for design to better accommodate this
- Broad overview of tasks/problems needed to solve


Design 1:

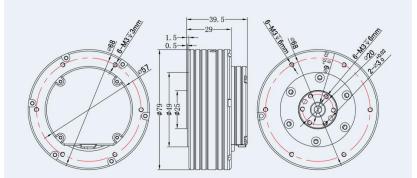
- Description
 - Simple One-armed design with cable bracing BOA system for scapula reinforcement. Cable operated contraction method.
- Advantages
 - One motor and lightweight design.
- Disadvantages
 - Single-arm system
 - Lacks adequate assistance for both arms to provide even stable support for pull up.

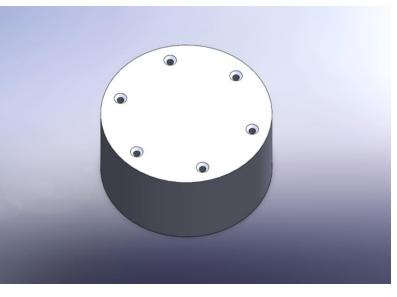

Design 2:

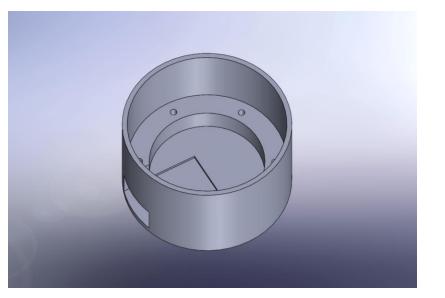
- Description
 - This design uses two motors mounted on each shoulder to control servo arms.
 - The servos will mimic a winch system that will control a wire mounted with two anchor points.
 - Use of Arduino Uno to control speed.
- Advantages
 - Simultaneous actuation of each motor
- Disadvantages
 - Possible safety issues

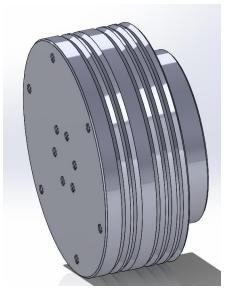
Design 3:

- Description
 - Motorized spool on back coiling wire in both directions
- Advantages
 - Only needs one motor and is a lightweight design
- Disadvantages
 - The hand pressure plate may be hard to disengage safely so need a better design


Motor Specifications


Specifications-AK60-6 V1.1

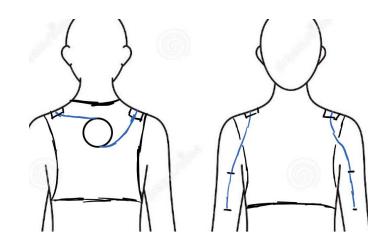

0.012	Ke(V/rpm)	368	Weight(g)
0.15	Km(Nm/√w)	24	Voltage(V)
14	Number of Pole-Pair	3	Rated Torque(Nm)
605±5	Resistance Phase to Phase($m\Omega$)	9	Peak Torque(Nm)
415±10	Inductance Phase to Phase(uH)	220 (Output)	Max Speed@Rated Torque(rpm)
Φ79	OD(mm)	4.5	Rated Current(A)
39.5	Height(mm)	13.5	Peak Current(A)
24.46	Max torque weight ratio(Nm/kg)	0.113	Kt(Nm/A)
6:1	Reduction ratio	80	Kv(RPM/V)


Product Drawing-AK60-6 V1.1

SOLIDWORKS Models: Motor & Mount

10/11/2022

Concept Evaluation - Pugh Chart


- Through the Pugh chart the team was able to narrow down their designs.
 - Designs were compared to one another through a 'datum' and given a scored based on this.
- Why use a Pugh Chart?
 - A Pugh Chart allowed the team to compare their designs and decide on the most optimal one.

Pugh Chart										
Selection Criteria	Datum	Design 1	Design 2	Design 3	Design 4	Design 5				
Lightweight	Datum	S	+	+	-	-	Кеу			
Portable	Datum	S	S	S	S	S		+	positive	1
Low Profile	Datum	S	+	+	-	+		-	negative	-1
Comfort	Datum	+	+	S	S	-		s	neutral	0
Stability	Datum	+	-	+	+	S				
Overall Saftey	Datum	S	-	S	-	S				
Total +	Datum	2	3	3	1	1				
Total -	Datum	0	2	0	3	2				
Total S	Datum	4	1	3	2	3				
Score	Datum	2	1	3	-2	-1				

Concept Evaluation -Pugh Chart Continued

- Designs 1, 2 and 3 came out on top in the Pugh Chart.
- Customer Needs:
 - Lightweight
 - Low profile
 - Overhand pull-up style
 - Free arm motion
 - Two handed pull-up is preferred
- With these customer needs in mind, designs 1, 2 and 3 will be discussed.

Concept Evaluation - Design Matrix

Engineering Deg	\\/aiaht	De	sign 1	Desi	ign 2	Design 3		
Engineering Req	Weight	Raw	Weighted	Raw	Weighted	Raw	Weighted	
Lightweight	0.2	7	1.4	8	1.6	8	1.6	
Portable	0.2	6	1.2	7	1.4	7	1.4	
Low Profile	0.2	8	1.6	7.5	1.5	8	1.6	
Comfort	0.1	7	0.7	8	0.8	7	0.7	
Stability	0.15	6	0.9	2	0.3	6	0.9	
Overall Saftey	0.15	6	0.9	6	0.9	5	0.75	
Total (Out of 10)	1		6.7		6.5		6.95	

Budget Planning - BOM

Item Description	Quantity	Units	Individual Cost	Total Cost
Wire - Continuous Flex Cable	1	100ft	\$0.40	\$0.40
Motor	2	1	\$298.90	\$597.80
Elastic Latex Fabric (Black, Braided)	1	36ft	\$13.35	\$13.35
3D Print Filament - Onyx	1	800cc	\$190.00	\$190.00
3D Print Filament - Carbon Fiber	1	50cc	\$150	\$150
Pressure Sensor	1	2	\$10.00	\$10
Lithium-polymer Battery	4	1	\$17	\$68
Nylon Parachord	1	100ft	\$11	\$11
Number of parts	12			
Total	\$1,040.55			

Budget Planning

- Based on the BOM roughly \$100 will be used to make the prototype design
- \$1040 will be used for the final design. This includes the robotic and electrical components not included in the prototype
- Most parts come in large quantities and will be transferred to each model.
- The rest of the budget will be used for replacing broken parts, testing, machining/fabricating, tools, and misc.

Туре	Prototype	Final Design
Materials	\$102.75	\$1040.55
Manufacturing	\$100.00	\$200.00
Emergency funds	\$300.00	\$750.00
Total	\$502.75	\$1990.55

References

- 1. "The myoshirt daily life assistance for the Upper Limb," Sensory-Motor Systems Lab | ETH Zurich. [Online]. Available: https://sns.hestetix.db//csea.db//oncentsresearch-motests/wearable-robots-for-assistance-and rehabilitation/Thesea.db//osearch/oncentsresearch-motests/wearable-robots-for-assistance-and rehabilitation/Thesea.db//osearch/oncentsresearch-motests/wearable-robots-for-assistance-and rehabilitation/Thesea.db//osearch/oncentsresearch-motests/wearable-robots-for-assistance-and rehabilitation/Thesearch/Oncentsresearch-motests/wearable-robots-for-assistance-and rehabilitation/Thesearch-motests/wearable-robots-for-assistance-and rehabilitation/Thesearch-motests-for-assistance-and rehabilitation/Thesearch-motests-for-assistance-and rehabilitation/Thesearch-motests-
- M. Dežman, T. Asfour, A. Ude, and A. Gams, "Mechanical design and friction modelling of a cable-driven upper-limb exoskeleton," Mechanism and Machine Theory, 08-Feb-2022. [Online]. Available: https://www.sciencedirect.com/science/article/nii/S0094114x22000234.
- 3. M. A. Gull, S. Bai, and T. Bak, "A review on design of upper limb exoskeletons," *Robotics*, vol. 9, no. 1, p. 16, 2020.
- 4. "Design of a cable-driven arm exoskeleton (Carex) for neural rehabilitation," IEE Xplore. [Online]. Available: https://ceeuplore.ieee.org/abstrat/document/6174677.
- 5. Y. Mao, X. Jin, G. Gera Dutta, J. P. Scholz and S. K. Agrawal, "Human Movement Training With a Cable Driven ARm EXoskeleton (CAREX)," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 23, no. 1, pp. 84-92, Jan. 2015, doi: 10.1109/TNSRE.2014.2329018.
- 6. S. J. Ball, I. E. Brown and S. H. Scott, "MEDARM: a rehabilitation robot with 5DOF at the shoulder complex," 2007 IEEE/ASME international conference on advanced intelligent mechatronics, 2007, pp. 1-6, doi: 10.1109/AIM.2007.4412446. https://decemplexel.org/abstrat/document/6412446?resel.org/abstrat/document/641246?rese
- 7. H. Ki et al., "Kinematic Data Analysis for Post-Stroke Patients Following Bilateral Versus Unilateral Rehabilitation With an Upper Limb Wearable Robotic System," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 2, pp. 153-164, March 2013, doi: 10.1109/TNSRE.2012.2207462. https://document/62520.60
- 8. AK60-6 V1.1_AK series dynamical modular_robot dynamics_t-motor store-official store for T-Motor Drone Motor, ESC, Propeller. [Online]. Available: https://store.unotor.com/cood/solution/ide/1201.
- 9. T. Petrič, L. Peternel, J. Morimoto, and J. Babič, "Assistive arm-exoskeleton control based on human muscular manipulability," *Frontiers*, 01-Jan-1AD. [Online]. Available: https://www.frontiersin.org/articles/10.3389/inbot.2019.00030/full.
- 10. X. Li, W. Li, and Q. Li, "Method, design, and evaluation of an exoskeleton for lifting a load in situ," Applied Bionics and Biomechanics, 25-May-2021. [Online]. Available: https://www.hindlawi.com/hournais/abb/2021/5513013/.
- 11. "Design, fabrication, and control of an upper arm exoskeleton ... WVU." [Online]. Available: https://psearchreapsiton.wvu.eiu/cei/itewcontent.cei/article=2677.8context=std.
- 12. "Ssl.umd.edu," ssl.umd.edu. [Online]. Available: https://ssl.umd.edu/.
- 13. "An Exoneuromusculoskeleton for self-help upper limb rehabilitation ..." [Online]. Available: https://www.lieb.etipub.com/doi/10.1089/soro.2020.00000.
- .4. C. Vavra, "Exoskeleton helps arm-based physical therapy," Control Engineering, 07-Feb-2022. [Online]. Available: https://www.ontrolen.com/andio/secon/andio/s
- 5. "The rise of the exoskeletons | machine design." [Online]. Available: https://www.meduluce.esign.com/nechanical_motion_systems/article/21831017/http://secol.eletons.
- 6. D. Chakarov, I. Veneva, M. Tsveov, and T. Tiankov, "New exoskeleton arm concept design and actuation for haptic interaction with virtual objects," CyberLeninka, 01-Jan-1970. [Online]. Available:
 - "DataSpace: Atlasarm: An exoskeleton arm for muscular rehabilitation patients and beyond," Princeton University. [Online]. Available: https://dataspace.princeton.edu/handle/88435/dso0176537397n

P11 Robotic Arm Exoskeleton

Questions?