
Project Description

- To design and improve upon the upper body arm exoskeleton called the Myoshirt, designed by ETH Zürich. The suit will assist the user's task of completing pull-ups and other daily activities.
- The sponsor for this project is W.L Gore with a budget of \$3,750.
- The client for this project is Dr. Zachary Lerner.

Background & Benchmarking

- State-of-the-art (SOTA)
 - The current progress on exomuscles is very limited
 - ETH Zürich is leading the rresearch in this field with the Myoshirt
- Current Industry Standards
 - Myoshirt Is a wearable 'shirt' with cables mimicking tendons
 - EMG Signal Reading Electromyography is used to read the electrical signals of muscles in contraction

Literature Review

• Myoshirt [1]:

https://sms.hest.ethz.ch/research/current-researchprojects/wearable-robots-for-assistance-andrehabilitation/The%20Myoshirt.html

"The Myoshirt – a modular soft wearable robot – assists the upper limb in daily life" (ETH Zurich).

• High Performance Humanoid Technologies [2]:

https://www.sciencedirect.com/science/article/pii/S009 4114X22000234

HPHT's design is a portable cable driven exo-muscle suit, aiming to improve everyday life to those who have upper-arm impairments. The use of Bowden cables reduces the weight issues but having the motor along the hip does not fit our goals.

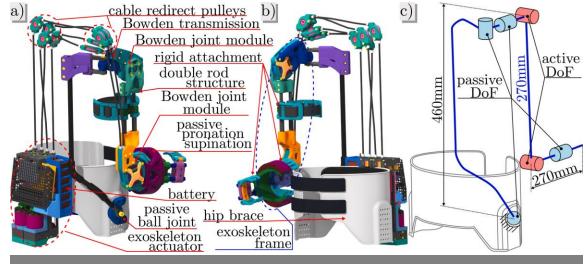


Photo provided by: HPHT

Literature Review Continued.

• Aalborg University [3]:

https://www.mdpi.com/2218-6581/9/1/16/htm

"The key challenges involved in the development of assistive exoskeletons are highlighted by comparing available solutions. This paper provides a general classification, comparisons, and overview of the mechatronic designs of upper-limb exoskeletons" (Gull).

• CAREX [4]:

https://ieeexplore.ieee.org/abstract/document/6174477

CAREX is an exoskeleton arm with a cuff system. Having three cuffs located at: the shoulder, upper arm and forearm reduces the weight of the design to 1.4kg. Motors for the system are mounted on an aluminum frame located above the user.

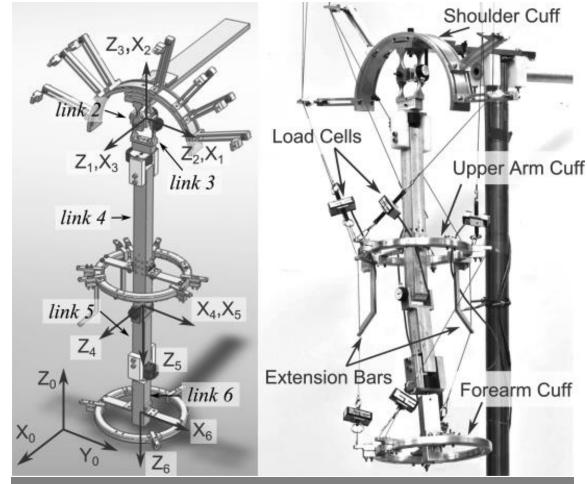


Photo provided by: CAREX

Customer & Engineering Requirements

Customer Requirements:

- Overhand pull-up style.
- Design with free arm motion in mind for other daily activities.
- Features a lightweight design.
- Has a low profile.

Engineering Requirements:

- Use a DC (direct current) motor to aid the pull-up.
- Implement a sensor and cable driven system.
- Must be <6lbs.
- Cannot protrude more than 10cm from the body.

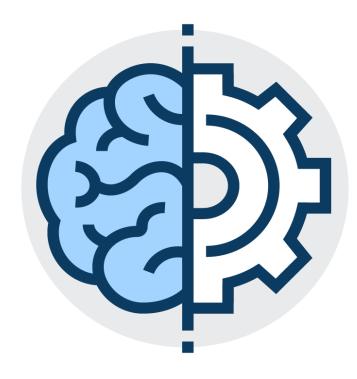


Image provided by: Kontron Technologies

Customer and
Engineering
Requirements
Continued.

Sustan OED			P		Arm I		keleto	n					
System QFD				Date:	e: 9/19/2022 Input areas are in yellow								
Increase mobility						iputui	cus u	e in ye		-			
Decrease total load on arm and shoulder muscle		-3											
DC Motor actuation			3						L	egend			
Increase shoulder and back stability		-9	3						А		shirt		
Implement a failsafe mechanism				9					В	HP	РНТ		
Increase everyday quality of life			3		1	1			С	MA)	KFAS		
Cable driven system			9	9	-1	1							
		Technical Requirements C			Cus	Customer Opinion Survey							
Customer Needs	Customer Weights	Increase mobility		DC Motor actuation	Increase shoulder and back stability	Implement a failsafe mechanism		Cable driven system	1 Poor	2	3 Acceptable	4	5 Excellent
Lightweight	5	9	3	1			9	3	В	С	Α		
Portable	3	3					9	3	AB		С		
Low Profile	5	9		3	1	1	3	9	В	A	С		
Comfort	3	1			1		9				AB	С	
Safety	4			3	-	9	3	3				Α	BC
Stability	4		3	1	9		1	3					AB
Technical F	Requirement Units	ROM	z	N/A	z	N/A	N/A	N/A					
Technical Requirement Targets		N/A	N/A	N/A	100	N/A	N/A	N/A					
						_	130	~					
Absolute Tec	hnical Importance	102	27	36	44	41	÷	93					

Schedule

- Current events have been completed
- Future events are on the schedule
- The Team is on track

TASK	ASSIGNED TO	PROGRE SS	START	END
Project Initiation				
1st Team Meeting	Team	100%	9/14/22	9/14/22
Team Charter	Team	100%	9/5/22	9/14/22
CN/ER Presentatic	Team	75%	9/14/22	9/19/22
1st Client Meeting	Team	50%	9/21/22	9/21/22
Research				
Research Lab Visit		0%	9/21/22	9/21/22
Concept Generation		0%	9/23/22	9/28/22
Team Meeting		0%	9/28/22	10/1/22
Concept Generation		0%	9/28/22	9/30/22
Concept Selection		0%	9/28/22	10/1/22

Budget

- Our allowable budget from GORE is \$3750.
- Our team will divide the cost between prototyping and final design.

Туре	Prototype	Final Design
Materials	\$200.00	\$1500.00
Manufacturing	\$100.00	\$1000.00
Emergency funds	\$200.00	\$750.00
Total	\$500.00	\$3250.00

Questions?

References

- "The myoshirt daily life assistance for the Upper Limb," Sensory-Motor Systems Lab | ETH Zurich. [Online]. Available: https://sms.hest.ethz.ch/research/current-researchprojects/wearable-robots-for-assistance-and-rehabilitation/The%20Myoshirt.html. [Accessed: 19-Sep-2022].
- M. Dežman, T. Asfour, A. Ude, and A. Gams, "Mechanical design and friction modelling of a cable-driven upper-limb exoskeleton," *Mechanism and Machine Theory*, 08-Feb-2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0094114X22000234. [Accessed: 19-Sep-2022].
- 3. M. A. Gull, S. Bai, and T. Bak, "A review on design of upper limb exoskeletons," *Robotics*, vol. 9, no. 1, p. 16, 2020.
- 4. "Design of a cable-driven arm exoskeleton (Carex) for neural rehabilitation," *IEEE Xplore*.
 [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6174477. [Accessed: 19-Sep-2022].