

P11: Robotic Shoulder Exoskeleton

Colin Cipolla Dylan Kurz Jordan Finger Michael George Michael Marchica

		Project Start:	Wed, 1/	/18/2023																		
		Display Week:	11			Mar 27, 2023			Apr 3, 2023				Apr 10, 2023									
					2	27 2	8 29	ə 30	31	1	2 3	4	5	6	7	8	9 10) 11	12	13 1/	4 15	16
TASK	ASSIGNED TO	PROGRESS	START	END	1	мŀ	т	/ т	F	s	бΝ	1 т	W	т	F	s	sM	Т	w	TF	s	s
67% to 100% Build																						
UGRADS Registration	Team	100%	3/6/23	3/10/23																		
Client Meeting #5: Present New Pivot Design	Team	100%	3/20/23	3/24/23																		
Redesign	Team	100%	3/24/23	3/30/23																		
Client Meeting #6: Present 100% Build, Get Client Approval	Team	100%	3/31/23	3/31/23																		
Complete Final Build: Harness System, Onyx/CF Printing, CF Arm Bar	Team	100%	3/31/23	4/5/23																		
Present 100% Build	Team	Late	3/31/23	4/4/23																		
Design Testing																						
Finalize Testing Plan	Team	100%	3/8/23	3/31/23																		
Meet with Client to Discuss Power System	Team	50%	4/4/23	4/8/23																		
Initial Testing Results	Team	0%	4/9/23	4/11/23																		
Final Testing Results: Pull-up Test	Team	0%	4/10/23	4/14/23																		
Final Poster Due: Display Testing Results	Team	0%	4/14/23	4/14/23																		

Gantt Chart

- Currently behind schedule.

- 3D prints began after the 100% build was due.

- Our client is designing the powerhouse for the system. Testing is delayed until that is finished.

Design Efforts - CAD Iterations

Design 1 – Fall Prototype

Design 2 – Ball & Socket

Design 3 – Revised Ball & Socket

Design 4 – Revolute Joint

Design 5 – Revised Revolute Joint

67% to 100% Design Iteration

Design 6 – Spring 67% Prototype 4/7/2023

Current and Final CAD

Sub-Assembly A: Bowden Termination Block

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
1	A-01	Ball Bearing	1
2	A-02	Inverted External Retaining Rings	1
3 A-03		Side-Mount External Retaining Rings	1
4	A-04	TERMINATION BLOCK	1
5	A-05	TUBE CAP	1

Sub-Assembly B: Motor

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
1 B-01		MOTOR AK60-6	1
2	B-02	MOTOR MOUNT	1
3 B-03		MOTOR ADAPTER PLATE	1
4 B-04		SPROCKET PLATE	1
5 B-05		CHAIN SPROCKET 2302K68	1
6 B-06		MOTOR BEARING 780K143	1

Sub-Assembly C: Pulley

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
1	C-01	Ultra-Strength Lightweight Carbon Fiber Tube	1
2	C-02	ARM CUFF	1
3	C-03	PULLEY	1
4	C-04	ROD END	1
5	C-05	ALLTHREAD	1
6	C-06	HEX BOLT 1/4-20	2
7	C-07	1/4in Steel Washer	2
8	C-08	1/4-20 NUT	2
9	C-09	5/16-20 HEX BOLT	2
10	C-10	5/16-20 HEX BOLT	2

Michael M 8

FEA

Bowden Cable Termination block experiences less than a millimeter of deformation which passes the theoretical loading it will experience

Carbon Fiber Square stock has almost no deformation due to the forces from the motor

Purchasing Plan

Total Budget: \$3750 Total Spent: \$2726.26 Remaining Budget: \$1023.74

- Highly iterative design process with 3D printing
- Additional hardware is either owned or purchased outside of the project funding

Item	Quantity	Vendor/Manufacturer		tal Cost
AK 60-6 Motor	2	T-Motor		650.00
Onyx Filament 800cc	2	MarkedForge		380.00
CF Filament 150cc	2	MarkedForge	\$	900.00
Roller Chain Sprocket	2	McMaster Carr		26.00
Roller Chain	2	McMaster Carr		36.00
Connecting Link	4	McMaster Carr		7.32
CF Square Stock 32"	1	McMaster Carr		139.99
Adding and Connecting	2	McMaster Carr		6.78
Steel Rod Machinable	1	McMaster Carr		54.17
Onyx Filament 800cc	1	MarkedForge	\$	210.00
CF Filament 50cc	1	MarkedForge	\$	170.00
PLA	1	MarkedForge	\$	56.00
Pirahna Dive Harness	1	Pirahna Dive	\$	90.00
		Total Spent	\$	2,726.26
		Total Budget	\$	3,750.00
		Total Utilization		73%

4/7/2023

Manufacturing Plan

- All manufactured parts were3D printed in house
- The sprocket weld was done in the machine shop by one of the team members
- All components have been purchased, printed, and assembled onto the device.

ltem	Quantity	Vendor/M	anufacturer	Total Cost
Shoulder Plate	1	Team	3D Print	\$0.00
Hinge Plate	1	Team	3D Print	\$0.00
Large Pulley	1	Team	3D Print	\$0.00
Large Pulley Bridge	1	Team	3D Print	\$0.00
Pulley Flat Anchor	1	Team	3D Print	\$0.00
Tube Spacer	1	Team	3D Print	\$0.00
Bicep Cuff	2	Team	3D Print	\$0.00
Bicep Mount Upper	1	Team	3D Print	\$0.00
Bicep Mount Lower	1	Team	3D Print	\$0.00
Ball Joint Bar	2	Team	3D Print	\$0.00
Ball Joint	1	Team	3D Print	\$0.00
Pivot Point	1	Team	3D Print	\$0.00
Socket Mounting Plate	1	Team	3D Print	\$0.00
Corner Hinge	1	Team	3D Print	\$0.00
Motor Mount Plate	1	Team	3D Print	\$0.00
Motor Mount	3	Team	3D Print	\$0.00
Onyx Pulley	1	Team	3D Print	\$0.00
Onyx Corner Hinge	1	Team	3D Print	\$0.00
Sprocket Shaft Weld	1	Team	Machine Shop	\$0.00

Testing Plan

CUSTOMER REQUIREMENTS	INITIAL TESTS	FINAL TESTS
Cable Actuated	Is it cable actuated?	N/A
Utilize a Pulley	Is a pulley used to create torque?	N/A
User Operable	N/A	Can the user operate the device independently of stationary machines?
Lightweight	Does the device weigh less than or more than 6 lbs.?	N/A
Low-Profile	Does the device protrude less than 10cm (3.94in) from the user's body?	N/A
Assist Pull-up Motion	N/A	15% Increase in pull-ups assisted as measured from the unassisted number

Demonstration