Travis Harrison Connor Hoffmann Sean McGee Scott Mesoyedz

General Atomics -Midpoint Presentation

ME-486C | General Atomics | 21Spr01-GA | Midpoint Presentation | 09/15/2021 | Scott

Design Description

- Design a satellite test fixture to collocate its center of mass with the center of rotation of a spherical air bearing
- Since Hardware Review 1
 - Parts acquisition
 - Manufacturing
 - Motor controls
 - Simulation
- Sponsor: General Atomics
- Client: General Atomics

Current State of Design

- Currently on the same iteration since Hardware Review 1
 - One change was made to satellite brackets
- Changes made to replica CubeSat
- Operation No Changes
 - Use lead screws to move center of mass location

Current State of Manufacturing

All currently manufactured parts present

- The fixture requires a method of moving in all three directions (ER #5,6)
 - The base plate has been made
 - The Z-carriage has been outsourced, to be delivered next week
 - The lead screws have been purchased and waiting for integration
 - The motors have been selected but require testing
- The system needs to be able to rotate 360 degrees and maintain 35 degrees of tilt (ER #12,13)
 - The inner bearing is recently completed
 - The angular bearing brackets that will function as the outer bearing have been milled
 - A stand needs to be made before it can be bolted down and assembled
- The bearing mount is compatible with the fixture (ER # 14)
- They system is heavy (ER #8)
 - Most of the parts are made from aluminum
 - The additional weight is counterintuitive to reducing the overall weight

Current State of Controls

- Currently using open-loop control
 - Closed-loop control is being designed, but requires a completed prototype to test
- Using Simulink to create a computer model
 - Basics done, now moving towards accuracy
 - Recreating motor control and sensors within simulation
 - Goal: Have accurate and working computer model ASAP to prepare for physical model
- If we can meet the ER of accurately collocating COM with COR within simulation, then we can implement the same procedure to physical model. (ER#1-3, 6)
- Automated controls will help reduce the time required for repositioning. (ER#17, 18)

Bill of Materials

- Most important items have been purchased
- Some minor items remain such as Bolts/Hardware
- Spent: \$1,988.87
- \$2,000 reserved for travel
- Remaining: \$4,011.13

	Name/Description	Parts	Category	Quantity	Price
1	Male and female pin connectors	Motor Control	Motor Assembly	1	\$15.16
2	Junction boxes	Motor Control	Motor Assembly	1	\$8.72
3	Toggle switch	Motor Control	Motor Assembly	1	\$10.91
4	Pulley assembly	Stepper motor drivetrain	Motor Assembly	4	\$61.09
5	Stepper motor bracket	Stepper motor drivetrain	Motor Assembly	1	\$16.36
6	12V power supply	Motor Control	Motor Assembly	1	\$21.82
7	distribution board	Motor Control	Motor Assembly	2	\$18.54
8	Terminal block kit	Motor Control	Motor Assembly	1	\$13.53
9	Stepper motor driver	Motor Control	Motor Assembly	1	\$10.14
10	Stepper motors	Stepper motor drivetrain	Motor Assembly	1	\$42.56
11	Lead screws	Stepper motor drivetrain	Control Assembly	2	\$26.18
12	Snap ring kit	Stepper motor drivetrain	Motor Assembly	1	\$11.84
13	pulley belts	Stepper motor drivetrain	Motor Assembly	2	\$24.23
14	3D print filament	Replica Satellite	Manufacturing	2	\$45.98
15	Lead Screws	Stepper motor drivetrain	Control Assembly	4	\$17.40
16	Linear bearing sleeve	Stepper motor drivetrain	Control Assembly	10	\$9.10
17	Hex nuts	Lead screws	Control Assembly	4	\$8.84
18	Linear bearing sleeve	Drive Train	Control Assembly	10	\$9.60
19	linear bearing sleeve	Drive Train	Control Assembly	10	\$9.40
20	Aluminum	Lead screws Mounts	Manufacturing	3	\$27.36
21	Retaining rings		Control Assembly	1	\$11.02
22	retaining rings	Drive Train	Control Assembly	1	\$8.71
23	Linear rods	Drive Train	Control Assembly	10	\$55.30
24	Lead screw clamps	Drive Train	Control Assembly	4	\$29.80
25	Aluminum		Manufacturing	1	\$16.00
26	Retaining rings		Control Assembly	1	\$9.50
27	Set Screws		Control Assembly	1	\$9.38
28	Aluminum Plate	Base Plate	Manufacturing	1	\$170.48
29	Aluminum bars	Lead screws	Manufacturing	2	\$127.38
30	3D Filament	Replica Sate	Manufacturing	3	\$68.97
31	3D Filament	Replica Sate	Manufacturing	2	\$45.98
32	Steel stock	Weights in Replica sate	Manufacturing	2	\$173.76
33	JB Weld	Replica Sate	Manufacturing	3	\$43.17
34	Steel Disc	Outer bearing plate	Manufacturing	1	\$54.92
35	Steel Sheet	Sateplate	Manufacturing	1	\$97.24
36	Steel Rod	Brackets	Manufacturing	1	\$13.00
37	Brass Stock	Vertical Weights	Manufacturing	2	\$151.44
38	Aluminum C channel	Vertical Weights	Manufacturing	2	\$74.20
39	Brass Stock	D. H. G.	Manufacturing	1	\$26.22
40	Aluminum plate	Replica Sate	Manufacturing	2	\$19.72
41	Net	Safety system	Testing	1	\$23.99
42	Aluminum	Replica air bearing	Manufacturing	1	\$117.69
43	Z carriage			1	\$71.44
44	Vertical Brackets			5	\$79.20
45	setup			1	\$81.60

ME-486C | General Atomics | 21Spr01-GA | Midpoint Presentation | 09/15/2021 | Connor

Implementation Plan

- All major design decisions have been finalized meaning that there will only be slight alterations based on the performance of the current iteration.
- Manufacturing is nearing completion. The final work orders are expected to be completed in the next few weeks and the remaining purchases are expected to arrive before Hardware Review 2.
- A comprehensive Bill of Materials for all required fixtures, bolts, screws, tools, etc. has been compiled and will be purchased so that the system can be assembled upon completion/arrival of the remaining parts.
- Assembly is scheduled to start around October 15th and continue through November 4th as parts are completed.
- Assuming there are no inherent mechanical problems that would require a redesign, the next step will be to start testing and implementing the coding aspect of this project.

Implementation Plan Progress

Manufacturing Progress

Northern Arizona University

21-Spr-GA																								
Project start date:	9/24/2021				12		1.0		Scro	ling inc	rement	E 0	•											
Milestone marker:	1	P	Hardware Review 2		Sept	ember	r		Octo	ber														
					24 25	5 26 27	7 28 2	30	1 2	3	4 5	-	7 8		10 11	1 1	2 11	24	15 1	6 D		=	-	
Milestone description	Assigned to	Progress.			F S	5 M	TW	T .	F S	5 1	M T	w	T F	5	5 N	4 1	-	T	F 1	1	-	т	-	• 1
Machining (smaller																								
Angled Plates for Outer Bearing	Travis, Scott	100%	9/24/2021	14																t	t		1	
Satellite Brackets Lower	Travis, Scott	100%	10/1/2021	14																				
Satellite Brackets Upper, Side	Travis, Scott	40%	10/8/2021	14																				
C Channel Covers	Scott	20%	10/15/2021	7																				
Linear Rod Fixtures	Travis	10%	10/15/2021	7																				
Steel Weights	Travis	0%	10/18/2021	7																				
Machining (work orders)																								
Inner Bearing (Hemisphere)	Machine Shop	100%	9/24/2021	31																				
Base Plate	Machine Shop	100%	10/1/2021	3.4																				
Satellite Plate	Machine Shop	20%	10/11/2021	14																				
Outer Bearing Plate	Machine Shop	20%	10/11/2021	14																				
3D Printing																-								
Replica CubeSat (12 parts)	Travis	100%	9/24/2021	21																				
C Channels (8 parts)	Travis	70%	10/5/2021	3.4																				
Spacers (at least 30)	Travis	40%	9/24/2021	33																				
Assembly	Travis	10%	10/21/2021	3																				
Miscellaneous	Travis	35%	9/24/2021	33																				
Purchasing																								
Z Carraige	Connor, Sean	100%	9/24/2021	31																				
Y Asis Brackets	Connor, Sean	100%	9/24/2021	32																				
Motor Control System	Connor, Sean	100%	9/24/2021	31																				
Miscellaneous	Connor, Sean	90%	9/24/2021	31																				
Full System Integration																								
Assembly	All	10%	10/15/2021	3.2																				

ME-486C | General Atomics | 21Spr01-GA | Midpoint Presentation | 09/15/2021 | Travis Harrison

Implementation Plan Roles and Schedule

Remaining Deliverables

- Head of Manufacturing
- 3D printing Specialist
- Testing Engineer
- CAD Engineer
- Sean McGee
 - Software Developer
 - UI Interface Developer
 - Project Manager
 - Logistics Manager
- Scott Mesoyedz
 - Manufacturing Engineer
 - Testing Engineer
 - CAD Engineer
 - Editor
- Connor Hoffman
 - Software Developer
 - Website Designer
 - Financial Manager

	Northern Arizona	University																														
	21-Spr-GA																															
	Project start date:	10/7/2021				100			Scrollin	g increment	0																					
	Milestone marker:	1	•			Octob	ber											No	vemb	er												
					And and a second	7 8	9 10 11	12 13	14 15 1	16 17 18	15 20	21 22	23 34 1	5 26 2	28 29	30 31	1 2	3 4	5 6	7 8	5 25	11 12	13 14	15 16	17 1	19 2	0 2i 3	2 23	34 25 3	5 27	28 25	30 1
	Milestone description	Assigned to	Progress	Start	Days	T F	5 5 M	T W	7.7	5 5 M	T W	1.1	5 5 1	1	11	5 5	* 7	* T	F 3	5 14	T W	1.1	3 5	M T	* 1		5 5	4 1	w 🔨		5 10	1.
1	Assignments																															
	Midpoint Presentation	All	100%	10/12/2021	6																											
	Individual Analysis II	AB	5%	10/12/2021	15																											
	Hardware Review II*	All	50%	10/8/2021	30																											
	UGRADS Registration	AB	ON4	11/1/2021	7																											
	Draft of Poster	All	on	11/1/2021	12																											
	Website Check II	Connor	15%	10/25/2021	11														qt;													
	Final Presentation	All	15%	10/20/2021	30																											
	Final Poster	AB	0%	11/1/2021	38																											
	Final Report	All	15%	11/1/2021	38																											
	Final CAD, BoM	AB	15%	11/1/2021	38																											
e:	Operation/Assembly Manual	All	0%	11/25/2021	14																											
	Website Check - Final	AB	ons	11/25/2021	13																											
	Client Handoff	AB	0%	12/8/2021	1																									TT		
,	Hardware Review II																															
	Manufacturing (Team Members)		70%	10/18/2021	13										di-11-																	
	Manufacturing (Machine Shop Staff)		80%	10/19/2021	9																											
	3D printing		90%	10/7/2021	11																											
	Purchasing		95%	10/7/2021	30																											
	Assembly		30%	10/20/2021	18																											
	Memo		58	10/28/2021	10																											

Testing Plan

Three main testing procedures:

1. Functional test of fixture operation

Equipment: Inner + outer bearing, test satellite

2. Measure fixture's mass properties

Equipment: Inner + outer bearing, scale, IMU

3. Assess security of satellite mount

Equipment: Force transducers, Arduino

		Testing
	Engineering Requirements	Procedure
1	COM location error, X (*)	1
2	COM location error, Y (*)	1
3	COM location error, Z (*)	1
4	Endures typ. wear for multiple uses ()	1
5	Mount fixture dims. compatible with rails (*)	1
6	CubeSat position adjustable in 3 axes ()	1
7	COM of assm. must be at/below bearing CR (1)	1
8	Minimize weight of mount assembly (↓)	2
9	Reduce time needed for CubeSat install (↓)	1
10	Reduce number of tools needed for CubeSat install (1)	1
11	Force needed to dislodge CubeSat (↑)	3
12	Range of motion of mount, rotation (↑)	1
13	Range of motion of mount, tilt (↑)	1
14	Bearing mount dims. compatible with bearing dims. (*)	1
15	Minimize mount's moment of inertia (1)	2
16	CubeSat mount fixtures compatible w/ 3U,6U dims. (*)	1
17	Minimize time required to reposition COM (1)	1
18	Reduce number of steps requiring operator input (1)	1

Test #1: Functional Test

- Mount test satellite with known COM location
 - Is mounting hardware compatible? (ER#5,16)
 - Is mounting hardware easy to use? (ER#9,10)
 - Is fixture stable atop outer bearing? (ER#7)
- Perform translations needed form COM/COR colocation
 - Are translations within tolerance? (ER#1,2,3)
 - Is colocation process user-friendly? (ER#6,17,18)
- Simulate typical operation
 - Do all components operate as expected? (ER#12,13,14)
 - Do any components experience excessive wear? (ER#4)

Test #2: Mass Properties

- Identify fixture mass (ER#8)
 - Use scale to measure mass of fixture without satellite, inner bearing
- Identify principle moments of inertia (ER#15)
 - Mount inner bearing to fixture, place onto outer bearing
 - Allow fixture to come to rest
 - Invoke some known translation input
 - Measure resulting angular velocity, acceleration
 - Calculate moments of inertia, uncertainty

Test #3: Satellite Mount Security

- Determine holding force of satellite mounting hardware (ER #11)
 - Keep fixture stationary (e.g., bolted to surface)
 - Mount test satellite to fixture
 - Apply increasing force in X and Z directions, using force transducers to measure
 - Cease applying force once:
 - Satellite shifts position within mounting hardware
 - Mounting hardware fails
 - · Other fixture components deform excessively or show signs of impending failure
 - Applied force exceeds required 750 N

Questions?