Solar Tracking Structure Design Analysis of Concepts

Belsheim Joshua, Francis Travis, He Jiayang, Moehling Anthony, Liu Pengyan, Ziemkowski Micah

Nov. 18.2013

Joshua 1

Presentation Outline

- Introduction to the project
- Solar tracking angle analysis
- Three designs with analysis
- Updated project plan
- Conclusion

Project Introduction

Need

Current solar tracking systems are expensive unreliable and hard to maintain.

Objective

Design an efficient yet reliable solar tracking system.

• Sponsor

Dr. Tom Acker

• Testing environment

Will be tested with existing fixed solar panels

Solar Tracking Angle Analysis

- Most important angles
 - Solar azimuth (Ys)
 - Angle of Incidence (Θ)
 - Panels slope angle (β)
- Tracking systems are supposed to
 - Minimize angle of incidence (Θ)
 - Maximize angle of incident beam radiation

Zenith Normal to Sun borizontel surface Sun

All angles required for analysis

Solar tracking Analysis cont.

- Assumptions
 - Flagstaff at latitude of 35
 degrees North
 - Fixed slope angle of 36 degrees
- Matlab Program
 - Based on desired day of the year
 - Θ (angle of incidence)
 - Ys (Azimuth angle)
 - Oz (Zenith angle)

North-South Axis slope tracking

Solar tracking Data

Hydraulic Tracker Design

Isometric view

Side view

Changes from original design

- MR fluid
 - Used in damper hydraulic
 - Does not produce a force
- No ball joint
 - No mass produced ball joint with needed dimensions
 - The panels weight can be held by the hydraulics

Analysis

- The weakest point is the connection between the hydraulic and concrete blocks
- The force is 88.97 N
- Moment 2.67N-m

Part Selection

- Hydraulic
 - Piston diameter of 12.5 cm
 - Height difference is 1.045m
 - 49.1 kN of force
- Pump system
 - Produce 80 bars

Angled Tracker Design

Isometric view

Side view

Angled Solar Tracker Frame Analysis

General Equations Component A	Forces Solved
$\Sigma F_v = 0 = F_{solar} - F^*W$	F _{solar} = 325.4 N
$\sum F_x = 0 = A_{1x}$	F ₂ = 341.42 N
Component B & C	F ₃ = 357.44 N
$\sum_{y} F_{y} = 0 = -F_{solar} + F_{2} - W_{e1} * sin(\theta_{1})$	$A_y = 64.34$
$\sum F_x = 0 = -W_{e1} * \cos(\theta_1)$	A _x = 166.737
Component D & E	$B_y = 64.34$
$\sum_{x} F_{y} = 0 = A_{y} - (F_{3}/2) * \sin(\theta_{2})$ $\sum_{x} F_{x} = 0 = A_{x} - (F_{3}/2) * \cos(\theta_{2})$ $\sum_{x} M_{a} = L * F_{3}/2 * \cos(\theta_{2})$	B _x = 166.737

Micah12

Angled Solar Tracker Torque Analysis

• The Torque was calculated using :

 $T = (F \times 0.48) \times r$

- Torque = 6.5079 N*m
- Finding the desired Motor using Full-load Torque equation

 $T = (HP \times 5252)/rpm$

• HP/rpm = 0.001239

Solar Panel Array

Isometric view

- 3"x3"x0.25" square hollow tube frame
- 2" diameter partially keyed drive shaft
- Mounted bearing
- Timing belt and pulley system
- Motor*
- Sensor and control system*

Analysis of Solar Array Shaft

Side view of panels

Shaft FBD

Moment Diagram Shaft

Analysis of Solar Array Bottom

Bottom Frame FBD

Pengyan 16

Solar Panel Array Torque Analysis

• The Torque was calculated using :

 $T = Fc \times r$

- Torque = 300 lb-in
- Select the desired motor using equation

$$4T = (HP \times 5252 \times 8.851)/rpm$$

 $HP/rpm = 0.026$

Original Gantt Chart

+++#%					Zo	Zoom In Zoom Out Today - - Past Future - Show critical path Baselines												
GANTT project					20	2013												
		Name	Begin date	End date	6 (36) 3	I Week 37 9/8/13	l Week 38 9/15/13	Week 39	l Week 40 9/29/13	I Week 41 10/6/13	Week 42	Week 43	Week 44	Week 45	Week 46	I Week 47	Week 48	Wee 12/1
	0	Gather group information	9/5/13	9/11/13		010110	0/10/10	0/22/10	0/20/10	10/0/10	10/10/10	10/20/10	10/2//10	11/0/10	11/10/10	10/1/10	1112 1110	1411
	0	Meet with client	10/2/13	10/2/13														
		Needs and identification	10/3/13	10/4/13														
	0	Project plan	10/4/13	10/7/13														
Ŷ	0	Research	10/3/13	10/23/13							-	-						
		 Solar panels 	10/3/13	10/23/13														
		Design development	10/3/13	10/23/13														
		Existing designs	10/3/13	10/23/13														
	0	Numerical modeling	10/24/13	11/15/13														
	0	Choose final design	11/18/13	11/18/13														
•	0	CAD drawing	11/19/13	11/26/13												_	-	
	0	Project proposal	11/25/13	12/2/13														

Updated Gantt Chart

Conclusion

- We went over the analysis of the solar tracking angles that our systems will use.
- Presented updated designs in SolidWorks.
- Structural analysis for each design.
- As well as going over our progress in our Gantt chart

References

- 1. Beckman A., William, Duffle A. John, 2006, "Solar Engineering of Thermal Processes", Third Edition, John Wiley & Sons, Hoboken, New Jersey
- 2. Budynas G., Richard, Nisbett J., Keith, 2011, "Shigley's Mechanical Engineering Design", Ninth Edition, McGraw-Hill, New York, New York
- 3. Hibbler C. R., 2010, "Engineering Mechanics Statics", twelfth edition, Pearson Education Inc., Upper Saddle River, New Jersey
- 4. Hugh , M. (1995). *The design of hydraulic components and system* . London : Ellis Horwood
- Parker Cylinder. Hydraulic and Pneumatic Cylinder Appendix Application Engineering Data. <u>http://www.parker.com/literature/Industrial%20Cylinder/cylinder/cat/english/0106</u> <u>c002.pdf</u>

Questions?