HARNESSING WIND ENERGY FROM RECYCLED MATERIALS

Presentation 4

Final Design Review and Project Proposal

Team 3

Katherine Carroll
Margo Dufek
Andrew McCarthy
Leanne Willey

Contents

- Project Overview
- Criteria
- System Components / Circuit Diagram
- Component Overview & Specifications
 - Battery
 - Alternator/Generator
- Engineering Analysis & Results
 - Vertical vs. Horizontal Turbine
- Final Design Selection
 - Turbine Type, Dimensions, & Bill of Materials
- Timeline
- Summary

Project Overview

Customer Need:

 Inhabitants of third world countries have limited access to electricity.

Goal:

 Design an inexpensive, portable wind turbine system to harness and store wind energy.

Requirements/Constraints:

- Provide at least 0.5 kWh / day
- Total cost does not exceed \$50
- Weight does not exceed 45 kg

Criteria

Objective	Quantified Objective	Criteria
Inexpensive	Maximum Cost of \$50.00	• Cost
Recyclable	Available from local junkyards/stores	RecyclabilityMaterial availability
Energy Storage	0.5 kWh per day	 Electrical storage capability
Easily assembled, disassembled, moved		Physical constructionMaterialsSet-up
Able to withstand high wind speeds		MaterialsDesign strength

System Components/ Circuit Diagram

Component Overview & Specifications: Battery

Overview:

- Captures/stores power when appliances are not running.
- Car/motorcycle battery
 - Easily scrapped for little cost
 - Stores enough energy for project requirements

Specifications:

- Car battery: 12 V, 80 Ah, 1 kWh
- Motorcycle battery: 12 V, 6 Ah, 72 Wh

Component Overview & Specifications: Alternator/Generator

Bicycle Dynamo (Bike Light Generator)

- Can produce up to 60 W
- Cost upwards of \$200, but older models are less expensive
- Specifications vary widely

Motorcycle Stator

- Lower RPMs required to produce power
- Higher cost than bicycle dynamo, although may be salvaged from old/wrecked motorcycles
- 12 V, 750 RPM, 60-90 Watts

Engineering Analysis

• Power from a wind turbine:

•
$$P = \frac{1}{2}C_p \rho A V^3 \longrightarrow A = \frac{2P}{C_p \rho V^3}$$

Assumptions/ Givens:

Symbol	Variable	Quantity
А	Swept area of turbine blades	m^2
C_p	Coefficient of performance	0.4 (horizontal) 0.22 (vertical)
ρ	Density of air	1.2 $\frac{kg}{m^3}$
V	Average wind speed	$5\frac{m}{s}$
Р	Power produced (CFL + Fan)	55 Watts* (for 5 hours each day)

^{*}Replaced 60W incandescent bulb with 15W CFL bulb

Analysis Results

Vertical vs. Horizontal Turbines

Swept Area Required: 3.33 m^2 (Cp = 0.22, P = 55W)

Swept Area Required: 1.83 m^2 (Cp = 0.4, P = 55W)

Final Design

- Swept area required to produce
 55 Watts: 1.833 m²
- Minimum diameter required :
 1.53 m

Bill of Materials

Material	Cost
Battery (recycled)	\$20.00
Generator/Alternator (recycled – new)	\$20.00 - \$200.00
Bicycle rim	Scrapped
PVC or Fabric	\$10.00
Wood for frame	Scrapped
Shaft	Scrapped
Screws, fastenings, etc.	\$5.00

TOTAL COST: \$55.00 - \$235

Current Project Timeline

Summary

- Project Overview
- System Components and Specifications
- Engineering Analysis Approach & Results
- Final Design

Questions?

- References:
 - Professor Srinivas Kosaraju Northern Arizona University
 - Professor David Willy Northern Arizona University
 - J. Twidell and T. Weir *Renewable Energy Resources*, 2nd Ed., 2006.
 - http://greenterrafirma.com/index.htm