HARNESSING WIND ENERGY FROM RECYCLED MATERIALS

Katherine Carroll Margo Dufek Andrew McCarthy Leanne Willey

Department of Mechanical Engineering Northern Arizona University April 23rd, 2013

Overview

- Project introduction
- Background information
- Design process and progression
- Final design concept
- Prototype
- Testing & Results

Project Motivation & Need

- <u>Project Motivation</u>: Major issue in underdeveloped countries is lack of electricity
 - People living far away from power production facilities or the electrical grid
- <u>Project Need</u>: People whom do not have access to power production facilities or the electrical grid are in need of electricity

Design Goals & Scope

- <u>Project Goal</u>: Design a home-sized wind turbine system that can be reproduced by those in need of electricity.
- <u>Project Scope</u>:
 - Inexpensive
 - Includes a turbine and an energy storage method
 - Powers both a light bulb and a fan for at least 5 hours/day
 - Portable and relatively easy to manufacture

Design Requirements & Constraints

- <u>Requirements</u>:
 - Provides at least 0.5 kWh per day
- <u>Constraints</u>:
 - Cost does not exceed \$50
 - Built from common materials which are either recycled or otherwise sold at general hardware stores
 - Portable

Research – Horizontal vs. Vertical Axis

• Axis about which the wind-powered spinning occurs

http://www.onpointpro.biz

Research – Turbine Axis Considerations

- Horizontal axis turbines:
 - Airfoil design relies on both lift and drag forces
 - Need to be pointed into the wind
 - Higher efficiency
- Vertical axis turbines:
 - Operation in any direction wind
 - Only allows for rotation by drag forces
 - Many different designs to consider

Wind Tunnel Lab handout, ME 495L

Horizontal Wind Turbine Analysis

http://www.windturbinezone.com

Power produced by a turbine: $P=1/2 C lp \rho v f 3 A$

 $C \downarrow p = coefficient of performance$ $\rho = density of air$ v = velocity of air flowA = swept area of turbine

Coefficient of Performance

- Clp = coefficient of performance
 - ratio of kinetic energy in from wind/power capturedfrom turbine rotation
- Performance is dependent on wind turbine type and design
- Also dependent on operating wind speed

Coefficient of Performance Limitations

- The true $\mathcal{Cl}p$ of any design is restricted below the Betz Limit
- Betz Limit maximum theoretical $\mathcal{Cl}p$ for any horizontal axis wind turbine
 - Derived from fluid mechanics, and conservation of mass/ momentum equations
- Betz Limit = 59%

Swept Area Requirements

- Cross-sectional area that the airflow interacts with directly
- Dictated by turbine blade dimensions
- A=πr12
 - r = radius = length of turbine blade

http://www.thebetterplanet.com

Swept Area Analysis

• Rearranging power equation:

$P=1/2 \ C\downarrow p \ \rho v \uparrow 3 \ A \rightarrow A=2P/C\downarrow p \ \rho V \uparrow 3$

- Allows for calculation of necessary swept area
- Based on required power and estimated variables

Swept Area Analysis

- For analysis, the following assumptions were made:
 - Air density: $\rho = 1.2 kg/m^3$
 - Average wind speed: v=5m/s
 - Coefficient of performance (estimated): $C\downarrow p$ =0.40
 - Power required: P=55 W
 - $A=2P/C\downarrow p \ \rho V^{\uparrow}3 = 1.83 \ m^{\uparrow}2$ $r=\sqrt{A/\pi} = 0.76 \ m=30 \ in$

http://www.thebetterplanet.com

Generator Operation

- Converts mechanical energy into electrical energy
- Rotation of the blades spins a magnet around copper coils
- Electromagnetic induction generates an electrical current

Initial Design Concepts

- Treadmill motor & motorcycle stator
- Assumed 1:1 Gear ratio

Final Design Concept

- Modeled in SolidWorks
- 30" PVC blades
- 4:1 Gear ratio
- Central shaft to transfer energy
- Caster wheel to pivot 180°
- Rear mounted DC generator for balance and flow

Blade Design & Pulley System

- Curved drag surface to create rotational energy
- Gear ratio to increase the power output of the DC generator and V-belt to reduce tension drag

Final Design Concept & Prototype

Prototype – Design Changes

- Function, aid in prototype testing
- 6 blade design; increased torque at low wind speeds
- Constructed stand for display and testing
- Added nose cone; aesthetics

Prototype – View of mechanics

- Changed orientation of vertical tensioning system bolts; improved access
- Mounted tail shaft above generator block; increased clearance of large pulley

Manufacturing & Portability

- Attempted to use common hardware tools and techniques
 - Table saw, drill press/hand held drill, some welding, made templates
- Extremely portable
 - Disassembles into 4 components
 - 2 bolts (red)
 - 3 set screws (green)

Cost Analysis

Table 1 – Bill of Materials		
Component	Cost	
Generator	\$64	
Battery	\$35	
Pulleys	\$27	
Bearings & Shaft Collars	\$25	
Steel Bowl for Nose Cap	\$16	
Shaft	\$10	
Ероху	\$9	
Electrical wiring components	\$5	
V-Belt	\$4	
Caster Wheel	Scrapped	
PVC Pipe	Scrapped	
Wood	Scrapped	
Metal Posts	Scrapped	
Sheet Metal	Scrapped	
Car Tire	Scrapped	
Solder	Scrapped	
Total Cost	\$195	

Andrew McCarthy

Prototype Testing

- Simulated wind: fastened turbine to truck bed and drove truck at various speeds
- Wind Speed: 4 to 18 MPH
- Voltmeter, ammeter and digital speedometer
- Video

Results – Power Output

- Measured power follows expected trend
- Inaccuracy of testing procedure

Power Output vs. Wind Speed

Results – Efficiency

- Efficiency: 35% to 45%
- Same range as commercial wind turbines

0.5 **Coefficient of Performance** 0.4 0.3 0.2 0.1 0.0 3.0 5.0 8.0 2.0 4.0 6.0 7.0 9.0 Wind Speed [m/s]

Coefficient of Performance vs. Wind Speed

Results – Voltage Output

- Required voltage output: 14 V
- Wind speed needed: 3.64 m/s = 8.14 mph

Voltage vs. Wind Speed

Meeting the Project Scope

Requirements	Met? (Yes/No)	Comments
Produce at least 0.5 kWh per day.	Yes	Assuming a wind speed of 4 m/s for 9 -10 hours per day
Portable	Yes	Quick disassembly into four manageable pieces
Easy to manufacture	Yes	Used common hardware tools & techniques
Built from recycled/ common materials	Yes	
Cost less than \$50	No	High expense for battery and generator

Conclusion

- Successfully built a portable, home sized wind turbine
- Cost greater than expected
 - Availability of generator and battery
- Only 3.64 m/s = 8.14 mph required to charge standard 12 V batteries

References

- Dr. Srinivas Kosaraju, Northern Arizona University.
- Jones, B. 2009. A Brief Wind Power Tutorial. http://ecorenovator.org/wind-power-tutorial.
- Knight, B. 2012. DIY Wind Turbine Project. http://greenterrafirma.com/ DIY_Wind_Turbine.html.
- Professor David Willy, Northern Arizona University.
- PVC Pipe Size Dimensions, Identification & Pressure Ratings. 2012. http:// flexpvc.com/PVCPipeSize.shtml.
- Sizing Your Wind Turbine Tail. 2010. http://www.windynation.com/articles/ windturbine-tail-fin/sizing-your-wind-turbine-tail.
- Sprague, J., Huff, S., Solomon, K., & Waggy, M. Research and Development of Small Wind Turbine Blades. http://researchgroups.msu.edu/system/files/content/DevelopmentofSmallWindTurbineBlades.pdf.
- Twidell, J, & Anthony D. W. 2006. Renewable Energy Resources. (2nd ed.; London: E & FN Spon)

Questions?