Send and Receives in Time-step Sub-cycles

1 Abstract

This paper comments on the efficiency of both blocking and non-
blocking 1/0 implementations of a domain decomposed radiation
transport problem. Due to synchronization and timing issues,
blocking receives are necessary for the sake of simplicity and effi-
ciency.

2 Introduction

Radiation transport problems require, at each time-step, every particle to run
to completion. Within a domain decomposed problem this entails a separate
looping construct within each time step to loop until all particles have been
passed and received and have run to completion. A single particle can pass
between multiple domains numerous times before exceeding its time limit or
running out of energy. One obvious question is how should the send and
receives be structured within the sub-cycles to achieve maximum efficiency.
I explore this question in the following sections.

3 Problem and Discussion

Before I describe the problem, I will first cover some of the basic terms used
in this paper.

e Domain A portion of the problem description on an individual node
of a distributed cluster.

e Frozen Particles Particles waiting to be sent to another domain be-
fore they have run to completion in the current time step.

e Mesh Geometric problem space in which the particles move. In a
domain decomposed problem, the mesh is partitioned into separate
Domains and loaded onto unique nodes of a distributed cluster.

Consider the following pseudo-code for a single time-step:



\\begin time-step
0. run_particles();//run the initial set of particles

1. while(there_are_still_particles())
{
2. physics_send_particles_to_other_domains();
3. receive_particles_from_other_domains() ;
4. run_particles();//perform physics on received particles

}

The algorithm goes as follows. Given an initial set of particles (whose
generation is not demonstrated in the above code snippet), run the particles
until all particles are either Frozen or have run to completion. This is done in
the method in line 0. The next step enters the sub-cycle loop which continues
until there are no active particles in the system. The sub-cycle sends particles
to their respected destination domains, receives all the particles which have
been sent by other nodes, runs the received particles until they are Frozen
or have run to completion, and repeats.

However, one must be careful with the nature of the send and receives used
in lines 2 and 3. For example, assume that the method receive_particles_from_other_domains()
uses a nonblocking receive. Immediately you are confronted with the follow-
ing problems.

The first can be shown in the following example. In a 2 domain problem,
assume domain 0 sends some number of particles to domain 1 and then
progresses to line 3 before domain 1 has a chance to send its particles. Domain
0 then skips line 4 because there are no particles to run and goes up to line
1. Domain 1 in the meantime sends its particles and receives the particles
sent by domain 0. Domain 1 then runs its particles to completion such that
none of them want to cross over to domain 0. When domain 1 reaches line 1
where domain 0 is waiting to check if the system has zero particles, a reduce
message (the sum of all frozen particles) lets both of the domains know that
the system is free of frozen particles and both problems exit. However, there
are still particles waiting in the mpi buffer of domain 0 that have not been
received! The problem exacerbates if this happens to occur during a run with
multiple-time-steps as there is a possibility the particles waiting in the buffer
will be used in the subsequent time-step, compromising the correctness of
the solution.



One can avoid the problem described above by placing an MPI_Barrier()
construct between lines 2 and 3. However this is not a desirable solution
because the overhead in calling Barrier requires communication between all
nodes, on top of the nonblocking receives. Simply employing a blocking
receive on line 3 would be much more efficient than a Barrier construct. A
second solution may be to have the nonblocking receives sit in a ”busy wait”
until all domains have checked in with their particles or sent a message that
there are no particles to send. This solution mirrors a blocking receive in
functionality but it has the following drawback, forcing the code to sit in a
”busy wait” tells the resource scheduler that it is indeed active and therefore
unnecessarily ties up cpu time. A blocking approach, on the other hand,
allows the system to schedule other processes until the message is received.

4 Conclusion

The sub-cycles to ensure all particles pass between domains to completion
within a time-step should be implemented with blocking receives. Blocking
receives inherently synchronize all domains without the unnecessary overhead
of using barriers or busy waiting loops.



