Parallel Particle Framework Project Proposal

Martin Casado
Northern Arizona University
3515 N. Andes Dr.
Flagstaff, AZ 86004

Noel Keen
Lawrence Livermore National Laboratory
7000 East Ave. L-39
Livermore, CA 94550

October 17, 1999

Contents

1 Problem Statement

1.1 Background
1.2 BusinessIssues
1.3 Product Statement
1.4 Projected Valueo
1.5 Business Environment

2 Requirements

21 Goals.
2.2 Benefits
2.3 Software Requirements
2.4 Functional Requirements

241 Needs e

242 Wants
2.5 Non-Functional Requirements
2.6 Additional Constraints, Concerns or Requirements
2.7 Appendix: API Functionality Overview

3 Risk Assessment

3.1 Product Size Risks
3.2 Business Impact Risks
3.21 ProcessRisks
3.2.2 Technology Risks
3.2.3 Development Environment Risks

4 Team Standards
4.1 Roles s
41.1 Leader o

4.1.2 Communicator o . i 16

413 Recorder 16
4.14 Project Design 16
4.1.5 Programmerso 16
4.2 Meetings 17
4.2.1 Weekly Time for Outside Meetings 17
4.2.2 Standard agenda Lo 17
4.2.3 Decision Strategy L. 17
4.2.4 Minutes 17
4.3 Documentation 0oL 18
4.3.1 'Typesetting Language 18
4.3.2 Coordination L0000 18
4.3.3 Version Control 18
434 Format. 18
4.3.5 Review Process 18
4.4 Development Standards 19
4.41 Version Control 19
4.4.2 Commenting and Documentation 19
4.4.3 Compilers and Platforms 19
4.5 Self Evaluation Methods 19
4.5.1 Weekly Evaluations 19
4.5.2 Evaluation Contents 19
4.6 Standards for Behavior/Cooperation 20
4.6.1 Design Changes 20
The Design/Development Process 21
5.1 Methodology o 21
5.2 Deliverables oo 21
Resources 23
6.1 Tools and Environment 23
6.1.1 Compilers Lo 23
6.1.2 Platforms o o000 23
6.1.3 Version Control 24
6.1.4 Debuggers Lo 24

7 Technical Concept

7.1 Discussion of Views
7.1.1 Functional View . .
7.1.2 Data Flow
7.1.3 Physical View . . .

7.2 Preliminary Design
7.2.1 Block Diagram . .

7.2.2 Interface Option 1

7.2.3 Interface Option 2
7.2.4 Appendix I: Example Driver File Pseudo-Code
7.2.5 Appendix II: Driver Description
7.3 Feasibility
8 Architecture
8.1 Class Descriptions and Interactions
8.2 Data Structures
9 Schedule
9.1 Project Table
9.2 Gantt Chart

10 Testing

10.1 Philosophy of Testing . . .

10.2 Testing by Subcomponent

25
25
25
25
25
26
26
26
27

28
29

33
33
34

36
36
38

List of Figures

7.1

7.2
7.3

8.1

Programmers view of physics package with PPF. PPF hides

issues of multiple domains and all MPI programming. 26
Flow of particle interactions in a package using PPF 31
Block diagram of component interactions of a package PPF in

a using PPF in parallel environment. 32
Flow of particle interactions in a package using PPF 35

List of Tables

Abstract

This document is a proposal to develop the Parallel Particle Framework
(PPF). The Parallel Particle Framework will be an API to ease the par-
allelization of Monte Carlo physics packages simulating radiation particles.
This document covers the problem statement, requirements, specifications,
risk analysis, team standards, resource and schedule, design process and tech-
nical concepts to be used by the Parallel Particle Framework team.

Chapter 1

Problem Statement

1.1 Background

Physical modeling of real world phenomena often demands significant com-
puter resources, such as speed and memory, that far exceed that offered by
even the largest single processor or shared memory systems. The national
laboratories including Lawrence Livermore, Sandia and Los Alamos, are using
large distributed computer networks to handle these problems. Paralleliza-
tion of an algorithm across a distributed network is not a mechanized process
and the approach differs drastically between problems. Fortunately, some of
these problems can be classed, and generic solutions applied to them. One
class of these problems is radiation transport problems.

Radiation transport using the Monte Carlo method is well-known and is
used extensively at Lawrence Livermore National Laboratory (LLNL). To ac-
curately model a sophisticated three-dimensional problem including detailed
geometry specification it is common to represent the problem with a mesh.
The resolution can be controlled by the number of zones in the mesh which
dictates the size of the problem, that is the amount of memory needed to
store the mesh. As the mesh sizes become large it will not fit on even the
largest single memory unit. (Note that even if it could, we would still want
to run an even larger problem simply because we can —i.e. distributed mem-
ory...) Therefore, in order for the Monte Carlo particle packages to handle
problem descriptions larger than conventional memory on a single shared
memory node, the problem must be distributed across multiple nodes. A
distributed network computer must then domain decompose the mesh such

that it can be read into memory. Using a distributed network computer re-
quires the application to communicate between nodes using message passing
techniques such as with the MPI library. Learning the details of distributed
computing requires time and experience not common to many developers of
particle transport packages. In order to provide developers with an intuitive
interface to efficiently handle domain decomposition and particle passing, we
propose development of the Parallel Particle Framework.

1.2 Business Issues

Radiation particle packages are written largely by physicists without for-
mal backgrounds in computer science. Learning the intricacies of distributed
computing and applying it to a project increases the time of development and
may compromise the correctness of that project. More specifically, the busi-
ness issues surrounding the parallelization of radiation transport packages
are as follows:

e Parallel training increases project times.

e Parallel computation is not germain to many package developers fields
and can be viewed as a waste of resources.

e Efficiency and correctness of parallelization requires experience and
knowledge of architectures that many radiation transport developers
lack.

e Currently, each developer is approaching the parallelization problem
differently. The absence of a common structure makes this class of
code difficult to maintain.

e Current parallelization techniques used are not conducive to future
changes, such as:
— increased scalability
— load balancing
— optimization techniques

e Current parallelizations are not abstracted from the code to support
adaption to new parallelization technology.

1.3 Product Statement

The Parallel Particle Framework (PPF) project involves designing and de-
veloping an API which will be integrated into physics modules within the
KULL! framework. The API will provide a high level interface for the par-
allelization of particles over large meshes® for radiation transport physics
packages developed within KULL. The PPF will decompose the problem
mesh over large distributed super computers and handle all communication
of particles moving between nodes. The API must be constructed to inte-
grate into existing physics packages without changing the original programs’
paradigms.

1.4 Projected Value

The goals of the PPF are to save time in developing particle Monte Carlo
packages and to provide a standard method of parallelization. Benefits of a
technological solution are:

e Reduction of development and training hours in order to reduce the
time and cost of a project.

e Maximization of resources by enabling physicists to concentrate on
work applicable to their areas of study.

e Ensured correctness in parallelization.
e Increased maintainability of code, due to standardization.

e Ensured robust, efficient parallelization over distributed systems, im-
proving the end product.

e Preparation for future changes to distributed mechanisms by abstract-
ing parallelization methods.

!KULL is a large physics modeling package currently in development at LLNL
2a mesh is a collection of geometric components which represent a physical problem

1.5 Business Environment

The parallel particle framework is intended to be integrated into radiation
transport packages within the KULL framework. The KULL project envi-
ronment requires the PPF to adhere to the following constraints:

e It must conform to the C++ standard.
e It must compile on Digital Unix and AIX using the KCC compiler.
e [t will follow the KULL documentation standards.

e Builds should be easily integrated into the larger KULL make system.

Since the PPF is meant to be integrated not only into new projects but
existing code, the interface must be conducive to the parallelization of serial
code. That is to say, PPF must not require the project architecture to be
built around it, but more so be easily integrated into existing architectures.

In general, applications which use the PPF must accept following assump-
tions:

e Particles do not interact with each other. They are absolutely inde-
pendent.

e Particles contain the following base information:

— position in the mesh(z,y,2)
— direction of travel(u,v,w)

— time(#) since being sourced
— energy(FE) carried

— current zone in the mesh
e The mesh is rigid and particles move through the mesh.

e Particles are simulated and change mesh-based values such as energy
deposited, material temperature, etc.) which are quantities of interest
in the problem.

Chapter 2

Requirements

2.1 Goals

The goal of the PPF is to be a robust, efficient, and correct library to help in
the parallelization of radiation particle transport packages. Specifically the
goals of the PPF are to:

e Distribute workload of radiation particle transport problems semi-efficiently
between nodes of large distributed supercomputers.

e Provide scalability of a problem across arbitrary nodes.

e Decompose the problem mesh across across multiple nodes transpar-
ently to the developer.

e Provide transparent particle passing between nodes/mesh sections.

e Eliminate the need for developers to learn the intricacies of distributed
parallel programming.

e Provide a standard for particle physics module architectures.

e Reduce development and training time for radiation particle transport
packages.

e (Create a tracking system to aid in particle visualization.

2.2 Benefits

The benefits of creating a unifying parallelization library are as follows:

e Timeliness: The PPF will perform much of the work of parallelization
so the code does not have to be re-written for each package.

e Efficiency: The PPF will ensure efficiency in message passing by lim-
iting the amount of data that is passed, and only passing data when
appropriate.

e Consistency: Packages using PPF can be contrasted because a unify-
ing parallel framework provides consistent performance in the parallel
regions.

e Accuracy: The PPF will ensure accuracy in parallelization so that
particles are not lost, transported incorrectly or delayed.

2.3 Software Requirements

Since the parallel particle framework is a library to be used by developers of
large physics problems where correctness and efficiency is crucial, the library
must have the following attributes.

e Ease of Use: PPF must provide a simple interface that is intuitive to
a developer with no experience in parallel computing. All code dealing
with parallelization technology must be transparent to the developer.

e Efficiency: Large scale problems running billions of iterations on thou-
sands of nodes can continuously accumulate small efficiency problems
eventually leading to a significant increase to the running time of the
problem. For this reason the PPF must be extremely efficient in mes-
sage passing and performance.

e Stability: Problems run by radiation transport particle packages may
take days to complete. For this reason it is imperative that PPF be
stable by ensuring no runtime errors nor memory leaks. This is more
important for PPF than other small scale applications because a faulty
run can cost the developers days at a time. In the advent of a crash PPF
should be able to resume operation at the last time step completed.

e Scalability: The platforms used for large scale radiation transport prob-
lems are continuously growing in size, therefore in order for PPF to be
of use in the future it must be scalable to an arbitrary number of nodes
efficiently.

e Longevity: PPF must ensure the integrity of all its requirements for
the life of the package which implements it. The KULL framework is
expected to be a 20 year code, the PPF should retain functionality for
at least this time period.

2.4 Functional Requirements

The following two lists are details of the costumers needs and wants for the
Parallel particle frameworks functions.

2.4.1 Needs

e The library must be able to handle split meshes by indexing matched
faces between mesh partitions.

e During runtime the PPF must be able to make the following decisions
correctly:

when to stop tracking particles on a partial mesh and send parti-
cles frozen on a split surface to another domain

how many particles to buffer before sending

how often to perform checks whether or not to send buffered par-
ticles

when to ask if another domain is ready to send particles
how to handle load balancing if possible

what to do if one domain ends up with too many particles to fit
in memory

e Particles must be sent as efficiently as possible.

particles should not be packaged with extra information for send-
ing

— data should only be sent to nodes which require it, no broadcasts
Particle transfers between nodes must be accurate.

The library’s interface must be intuitive and not dependent on a prior
knowledge in distributed computing.

2.4.2 Wants

The library may handle large mesh sizes and adapt to changes in the
mesh interface.

The PPF may provide support for general domain decomposition and
work sharing between nodes.

— The mesh may be re-decomposed dynamically to handle load bal-
ancing.

— The PPF may use a domain replication scheme to fairly distribute
work loads.

The PPF may include shared memory parallelization within each node
using pthreads or OpenMP.

The library may include extensions for particle visualizations.

The library may decompose any given mesh using a graph cutting pack-
age such as Parmetis.

2.5 Non-Functional Requirements

All code written for PPF must be compatible with both the egcs and
KCC compilers

Programming must conform to sound object oriented design, and make
use of MPI2 if a reliable implementation is found for the IBM SP2
architecture.

PPF code must have general compliance with POSIX standards.

There must be readable and comprehensive documentation in all stages
of the development process.

e The library must compile and run on AIX 4.3 and DEC Unix.

e The library must be easily integrated into the make system of existing
projects.

2.6 Additional Constraints, Concerns or Re-
quirements

e KULL is an export controlled technology and the PPF could fall under
this category so open source may be impossible.

2.7 Appendix: API Functionality Overview

(For interface description and function specifics, refer to chapter 7)

Chapter 3

Risk Assessment

The following section provides an overview of potential risks in developing
the PPF, risks will be divided into the following categories:

e Product Size Risk

Business Impact Risks

Process Risks

Technology Risks

Development Environment Risks

10

3.1 Product Size Risks

Risks

Addition of extraneous code not directly pertinent to a project.

Limited number of users may limit PPF’s benefits.

The library may unnecessarily complicate the project using it.

Attempts to save a problems progress in the advent of failure may
use large amounts of system resources including drive space.

The PPF may add a disproportionate amount of overhead to small
problems.

MITIGATION

Development efforts should focus on limiting the code for
PPF to only handle particle passing and mesh decomposition
which is common to all projects.

During requirements capture, PPF’s usefulness should be
evaluated in light of the number of foreseeable clients.

Efforts should be made during development to make the library
linkage and interface as simple as possible.

PPF should only do large data dumps to hard disk if explicitly
sanctioned by the user.

It should be agreed by developers to use PPF only if the problems
they run are large enough to warrant it.

11

3.2 Business Impact Risks

Risks

Delivery deadlines may be unreasonable.

Late deliveries may result in additional costs to Livermore.

Defects in the PPF may have negative consequences.

Governmental constraints may inhibit development of PPF.

Integration into larger systems may be problematic.

The PPF interface may be too difficult to use by developers.

The the developers needs may not remain consistent over time.

Senior management at Livermore may not approve of the PPF.

Documentation for developers may not adequately describe the PPF.

Mitigation

Careful planning in the design phase will help provide
reasonable deadlines for deliverables.

Developers intending on using PPF will be updated as to its
progress during development so they will be able to plan around the projects progress.

The PPF must be thoroughly tested to eliminate defects.

Full specification and design of project must be presented
and approved of by senior LLNL management before development.

Packages which will include the PPF must be carefully studied
during design to ensure that there will be no incompatibility issues.

Efforts must be directed towards keeping the PPF interface simple.

The PPF should provide a basic functionality that will be
useful for the life of the KULL project.

As stated before, the proposal of the project must pass senior
management approval.

Each stage of the design and the development process must be
fully documented.

12

3.2.1 Process Risks

Risks

There is no process standard for development.

The lack of a write-up on the process may result in
design and development in an ad-hoc fashion.

Communication barriers between Livermore and Northern Arizona
University can result in discrepancies in the process design.

There has not been any full projects similar to PPF to base
the process on.

Both members of the project are relatively inexperienced in
organized process for design and development.

Time constraints will limit testing and code review.

The nature of the PPF limits test case design and use cases.

Mitigation

The PPF should follow a commonly used process that has
proven to be effective on other projects.

An effort should be made to document all aspects of the
process to aid in a structured development stage.

Planned weekly meetings and regular email exchanges will
help ensure both parties are on the same page.

Attention of the process selection based on the nature of
the project will provide a basis for design in the absence of
experience.

Reviewing process decisions with professors/managers will
help correct mistakes made from inexperience.

The project scope must be limited in light of time constraints
to guarantee a functional and stable product.

Interface issues can be resolved by approaching developers
who intend to use the PPF library.

13

3.2.2 Technology Risks

Risks

Parallelization techniques may become outdated within a few years.

Load balancing is difficult and ensuring optimality is
virtually impossible.

The PPF will be interfacing with BLUE’s hardware which
is experimental and unproven in stability.

Misuse of the PPF will compromise its performance.

Simplifying the interface may compromise the library’s
functionality.

The nature of the project requires facing problems which
have not been dealt with or mitigated in the past.

There is an uncertainty that the requirements requested
are doable.

Mitigation

The parallelization mechanism should be abstracted from
the functionality of the PPF so changes to a new technology will not be
difficult.

It should be understood by the developers who use PPF
that the load balancing may not be optimal.

Frequent comparison between builds on a proven system

such as the TERA cluster will help isolate errors caused by anomalous
behavior by BLUE. These problems can be brought to the attention
of Livermore Computing and/or IBM.

Careful and comprehensive documentation will help prevent
product misuse.

The priorities within the project must be analyzed prior
to design. If one decision compromises another the one with higher priority is chosen.

If a perfect algorithm cannot be developed to handle all
cases, a heuristic will have to do, and all shortcomings of the algorithm used
must be documented.

If the requirements prove to be to difficult a review of the
requirements must be brought before the clients and an acceptable compromise
must be reached.

14

3.2.3 Development Environment Risks

Risks

The project team does not have access to a process management tool.

The project team has little access to design and analysis tools.

Popular design and analysis tools are not appropriate
for development of the PPF.

Compatibility between the KCC and egcs compilers may be problematic.

Cross platform compatibility may prove problematic.

The project members have no experience debugging threads
on the sp2 or Digital Unix platform.

Thread debuggers for all platforms may not be available.

Mitigation

Process management can be accomplished by use of programs
such as Microsoft Project run on a separate machine than that used
for the project.

The PPF project does not warrant any special tools for design
or development, design should be rather straightforward as the library
has relatively few use cases.

Again the nature of the PPF project does not require
the use of extravagant design and development tools.

All code for the PPF must follow the C++ standard.

Continuous builds on all target platforms will ensure
compatibility at every step of the development process.

Project members must research debugging methods for threads
on the sp2 and Digital Unix platform.

In the case that an adequate debugger is not found, the

debugger.

threads can be debugged separately from the running code using a traditional

15

Chapter 4

Team Standards

4.1 Roles

4.1.1 Leader
Martin Casado

4.1.2 Communicator

Martin Casado

4.1.3 Recorder
Martin Casado

4.1.4 Project Design

Martin Casado, Noel Keen

4.1.5 Programmers

Martin Casado, Noel Keen

16

4.2 Meetings

4.2.1 Weekly Time for Outside Meetings

Weekly meetings will be held Wednesdays between 11:30am and 12:30pm over
the phone, unless conflicting with Noel’s schedule at LLNL. If a meeting is
missed it will be held at a later time or by discussion via email.

4.2.2 Standard agenda

The following items will be discussed in each meetings if applicable.

e Review of last meeting

Review of previous weeks goals for current week

Discussion of current status of the project

Discussion of how we succeeded or fell short of goals set at previous
meeting

Discussion of problems in development and design

Set goals for the next week

Conclude

4.2.3 Decision Strategy

All decisions will be made upon agreement by both Martin Casado, and Noel
Keen. If opinions result in a deadlock Dr. Pat Miller’s opinion on the matter
will serve as the final decision.

4.2.4 Minutes

Minutes will be kept for each meeting by Martin Casado and distributed
via email to Noel Keen and Stu Wecker by the end of the day Wednesday.
In the advent that the meeting did not take place at its scheduled time on
Wednesday, minutes will be distributed via email at the end of the day in
which the meeting took place.

17

4.3 Documentation

4.3.1 Typesetting Language

All documents produced during the parallel particle framework project will
be done using the IXTEX 2e.

4.3.2 Coordination

All documentation will be written by Martin Casado and submitted to Noel
Keen for editing and revision. If time constraints restrict Noel from going
over the paper, Martin will submit the papers directly.

4.3.3 Version Control

Documentation revision numbers will be maintained in the comments at the
top of each IATEX file. All changes should be added to the comments, as well
who made the changes and the date. Official copies of all documents will be
kept by the document coordinator.

4.3.4 Format

All documents will adhere to IXTEX file templates and document classes which
will be created and revised as the project progresses. Each document will
use the standard IXTEX styles, and set the following options

e 12pt font
e oddside margin 2.54 centimeters
e evenside margin 2.54 centimeter

e Roman style font

4.3.5 Review Process

Documents will be written by Martin Casado and submitted to Noel Keen
for review. All drafts must be finished by a pre-determined deadline and
submitted for review before the final paper is written.

18

4.4 Development Standards

4.4.1 Version Control

All code versioning will be done through Perforce on the LC machines and
CVS in Linux.

4.4.2 Commenting and Documentation

All comments and documentation of development will follow KULL docu-
mentation standards defined by the KULL team.

4.4.3 Compilers and Platforms

All program development will be on the UNIX operating system and support
the following platforms.

e IBM AIX 4.3
e Digital Unix
e Linux

All code developed will compatible with the KCC and ecgs compilers.

4.5 Self Evaluation Methods

4.5.1 Weekly Evaluations

Each week, Noel Keen will submit a quick email memo evaluating Martin’s
performance on the project. Each evaluation will be printed and saved in
the project notebook, and submitted to Stu Wecker upon request. Martin
will as well, submit a personal evaluation into the project folder weekly.

4.5.2 FEvaluation Contents

Each evaluation will discuss positive aspects of Martin’s performance as well
as negative, and provide a final statement on whether the performance was
low, average or well done.

19

4.6 Standards for Behavior/Cooperation

4.6.1 Design Changes

All design changes must be approved by Noel Keen. Both Noel Keen and
Martin Casado can propose design changes.

20

Chapter 5

The Design/Development
Process

5.1 Methodology

We propose to use the iterative design process for construction of the Parallel
Particle framework. Preliminary steps for development are as follows:

e Create workspace with working PolyMesh code.

Develop a fake physics package to randomly move particles around the
mesh.

Write a driver file to model a use of the PPF

Create the skeleton of the PPF. All methods should be defined, however
to begin with they will have no functionality.

Incrementally add functionality to the methods.

5.2 Deliverables

During the course of the PPF project, deliverables demonstrating the teams
progress will be submitted to Livermore for review. The deliverables will
include:

21

PPF interface description documentation

PPF OO architecture write-up

PPF skeleton mock-up

e PPF demonstrating basic functionality on a false physics package

Test results for runs of PPF on:

— large particle sets, few nodes

— large particle sets, many nodes
— large particle sets, serial run

— small particles sets, few nodes
— small particles sets, many nodes

— small particle sets, serial run

e Final product

22

Chapter 6

Resources

6.1 Tools and Environment

The following is a list of software and hardware resources available to the
PPF project team:

6.1.1 Compilers
The compilers which will be used for PPF development are as follows:
e eges 2.95.1

e KCC 3.4d

Compilers may be updated during development.

6.1.2 Platforms

All targeted platforms are large-scale distributed supercomputers at Liver-
more. If time is available during development, PPF will be ported to Linux

as well.
Need:

e TERA Cluster
— 24 DEC AlphaServer 4100 Model 5/533 SMP systems

23

— Each system has 4 CPU’s and 1 GB memory
— Processor speed of 533 MHZ

— Currently available with 23 nodes
— All nodes run Digital UNIX 4.0

e ASCI Blue-Pacific
Want:

e Linux

6.1.3 Version Control

e Both Blue and the Tera cluster share an NFS drive. One both of these
platforms Perforce will be the revision control system.

e If time constraints permit the development of PPF on Linux, CVS will
be used for revision control.

6.1.4 Debuggers
e TotalView

e gdb on Linux?

24

Chapter 7

Technical Concept

7.1 Discussion of Views

This section describes the PPF with respect to its function, data flow, and
interaction with the current environment.

7.1.1 Functional View

Functionally, the PPF is a library which is compiled or linked with the physics
package using it. All methods available to the user from the PPF are public
methods in the PPF _Interface class. The PPF is intended to mask the pro-
grammer from the intricacies of parallel programming as well as distributed
domains. Figure 7.1 diagrams the users perspective when using PPF with a
physics package.

7.1.2 Data Flow

The major component of data within a package using the PPF is the particle.
The particle is passed between the physics code and the PPF throughout
program execution. The figure 7.2 illustrates the particles interactions with
the package and the PPF during runtime:

7.1.3 Physical View

Packages using the PPF will be run as MPI programs. At the start of execu-
tion the program binary will be distributed to all participating nodes. During

25

- -Multiple: -
domains:

Physics | ppr
Package

A4

Programmer

Figure 7.1: Programmers view of physics package with PPF. PPF hides issues
of multiple domains and all MPI programming.

program execution, the PPF will use MPI as a medium of communication
between nodes. All buffering issues will be handled by the PPF.

7.2 Preliminary Design

7.2.1 Block Diagram

An abstracted view of high-level object interactions can be seen in figure 7.3.

7.2.2 Interface Option 1

The following preliminary design option gives the PPF more control over the
particles. The added control enables the PPF to force the programmers to

26

correctly implement domain decomposition of their code and cuts down on
the amount of code the developer using the PPF must write. The drawbacks
of implementing the PPF with more control is that it makes it more difficult
to integrate the PPF into existing code and packages using the PPF will
contain large amounts of proprietary code that is PPF specific.

e PPF.submitParticles pass the PPF a pointer to the list of particles

e PPF.reset set the current position in the particle list to the first par-
ticle

e PPF.nextParticle return a pointer to current particle in the list,
advance current particle to the next particle in the list

e PPF.moveTo move current particle to x position, y position in mesh
(Note: message passing must be considered in this method)

e PPF.getParticle return the current particle
e PPF.addParticle add a single particle to the current position

e PPF.distributeParticleList add the particles within a linked list to
the current list of particles by randomly distributing them throughout
the current list.

e PPF.deleteParticle delete current particle, or particle at a given in-
dex

7.2.3 Interface Option 2

A minimalist approach to the design of the PPF give the developers more
freedom to apply PPF to various problems and code structures. However,
the PPF will not be able to guaranty load balancing and development under
these loose guidelines may be detrimental to the integrity of the architecture
of the package. A minimal interface for the PPF package must include the
following methods.

e PPF.moveTo Move a particle to a different node

27

e PPF.sendParticles Send all of the particles frozen on a nodes edge
to the neighboring node.

e PPF.recieveParticles Receive particle list being sent from a different
node.

This model assumes that all other concerns of particles positions are han-
dled by the package developer.

7.2.4 Appendix I: Example Driver File Pseudo-Code

The following code snippet is an example of how the PPF may be used in
a project. Particle packages as not limited to a single design however, a
method’s logical position within the codes execution structure must remain
the same.

(1) Compute One Time Step {
(2) generateSources()
(3) Loop over Particles{

(4) Advance Particle {
(5) Do Work
if Frozen {
(6) PPF_Submit (particle)
(7) Erase particle from current node }
(8) PPF_SendFrozenParticles ()
(9) PPF_RecvFrozenParticles ()
}
}

(10) PPF_DoneAdvancing()
(11) if (PPF_NumRemainginPsarticles == 0){
(12) we are done with this time step

}
(13) PPF_Repartition()
Replicate Mesh()
7.2.5 Appendix II: Driver Description

1. Each time step is an independent parallel problem. All particles must
be run to completion in each time step before continuing.

28

2. This line generates the source particles which are coming from outside,
sources within the mesh, or are “census particles” which are particles
left over from the last time step. Source particles also include any
previous “combining” of particles.

3. The important item here is that the particles do not need to be com-
puted in any particular order (Note: there is a potential for cache
optimization here).

4. Move the particle within the mesh

5. Each particle’s work can be computationally intensive, this is where
the runtime code spends most of its time.

6. The application code using PPF decides which particles have hit the
mesh boundaries and at what times, these particles are then submitted
to the PPF.

7. Application removes particle from list of particles still advancing.
8. Ask PPF to send all particles to the correct nodes.
9. Ask PPF to receive particles sent from other nodes

10. Let PPF know that the the advancing particles loop is finished.

11. If there are particles that are jumping back and forth between meshes,
keep iterating until they have all terminated, otherwise the time step
is finished.

12. If PPF handles general domain decomposition it must be done between
time steps, here we can re-partition and replicate.

7.3 Feasibility

The issues that have not been resolved are as follows:

e If a node’s memory is completely used by the particles within that mesh
partition, how can PPF stop particles being sent to that node?

29

— If particles are stalled within the MPI_Send of the sending nodes
then we risk buffer overflows on the sending sides system buffer.

— If we require programmers to check whether a node’s memory
is saturated we compromise ease of use and PPF becomes more
difficult to integrate into existing code.

— If we manage to stop sends to that node there are a number of
timing issues we must deal with.

30

PPF DataFlow Diagram

Physics package
moves particles

Physics package

create source particles PPF passes particles

between nodes.

repeat until
all particles
arefinished

(Particle interactions with components of a package using PPF)

Figure 7.2: Flow of particle interactions in a package using PPF

31

Object Block Diagram

(block relations for non general domain decomposed package using PPF)

Physics Code Physics Code
AN 7
Ghostzones
PPF /
AN ly
4
Physics Code yzZ \
Physics Code

\
1 node of distributed system

Figure 7.3: Block diagram of component interactions of a package PPF in a
using PPF in parallel environment.

32

Chapter 8

Architecture

We have decided to begin by implementing the second option mentioned
in the design section. This method allows the package programmer more
flexibility since the PPF is only responsible for send and receives of lists of
particles. Secondly, this method allows the PPF to be more easily integrated
into existing code because it demands less PPF specific sections. In the
advent that the PPF should need more control, it can be implemented on
top of the current method which is a logical stepping stone.

8.1 Class Descriptions and Interactions

The PPF will be designed using a minimum of five classes distinguished by
responsibility.

e PPF Interface Facade class ! whose responsibilities are as follows:

— knows which subsystems’ classes are responsible for a request

— delegates client requests to appropriate subsystem objects
e PPF Statistics Keeps track of statistics for each run including:

— number of particles sent from current node

— number of particles received from each neighbor

!Design Patterns, Gamma, Helm, Johnson, Vlissides. Addison Wesly, 1995. Pg 185-193

33

average time for send and receives
average time between send and receives

time it took for the run from initialization to conclusion

e PPF _Timer Simple utility timer accurate to milliseconds

e PPF Logic Handles all logic for particle passing, including:

which domains to pass particles too
which domains to receive particles from

if not enough particles are in a list don’t send it (unless the send
is forced)

if the current node is out of memory, write particles to disk

e PPF _Parallel_Wrapper Wrapper class to abstract all parallel calls
to MPI

Figure 8.1 shows a general block diagram of class interactions in the PPF.

8.2 Data Structures

The architectural approach we choose in creating the PPF does not require
an extensive use of data structures. Rather, the majority of the code will
involve the technicality of sending particles between nodes and keeping track
of statistics. However, the PPF will include the following data structures:

e Particles will be stored and passed between functions in linked lists or
vectors from the Standard Template Library.

e Each node will contain a lookup array defining the neighbors. An enu-
merated type will represent each of the nodes sides and the neighbor’s
ID will be placed in the index represented by the value of the enumer-
ated type of that side.

This list is by no means inclusive, for example disk writes of particles in
saturated nodes may require the use of buffers and lookup tables.

34

PPF General Class Diagram

PPF_Interface
PPF_Statistics PPF_Logic
Y
y
PPF_Timer PPF_Parallel_Wrapper

Figure 8.1: Flow of particle interactions in a package using PPF

35

Chapter 9
Schedule

9.1 Project Table

The following project table is a planned schedule for spring semester, 2000.

36

Work Tasks

Planned Start

Planned Complete

1. Finish Proposal

Specs

Research

Schedule

Architecture

2. Validate with Sponsor:
Meet with Sponsor

Validate Web-site

3. Do Detailed Software Design
Data

Processes

Objects

4. Coding and Implementation
Interface Class and Headers
PPF _Logic Prototype
Parallel_Wrapper

PPF Logic with Wrapper
Statistics and Timer

5. Finish Code

Testing

Revision

Review

6. Finish documentation
Code Documentation

Project Usage Documentation

finished
finished
wk1, d2
wk1,d2

wk2,d3
wk2,d1

wk2,d4
wk3,d1
wk3,d3

wk4,d1
wk4,d3
wkb,d1
wk6,d1
wk7,d3

wk8,d1
wk8,d1
wk8,d1

wk11,d1
wk11,d1

finished
finished
wkl1, d4
wk1, d5

wk2,d3
wk2,d3

wk2 d6
wk3,d3
wk3,d5

wk4,d3
wkb,d3
wk6,d1
wk7,d3
wk8,d1

wk10,d5
wk10,d5
wk10,d5

wk11,d5
wk11,d5

37

9.2 Gantt Chart

Work Tasks

Wk1 Wk2 | Wk3 | Wk4

Wkb

Wk6

1. Finish Proposal

Specs

Research

Schedule

Architecture

2. Validate with Sponsor:
Meet with Sponsor

Validate Website

3. Do Detailed Software Design
Data

Processes

Objects

4. Coding and Implementation
Interface Class and Headers
PPF _Logic Prototype
Parallel_Wrapper

PPF Logic with Wrapper

XXXX
XXXXX

XXX

XX

XXX

XX

XXX
XXX

XXX
XXXXXX

XXXXX

Work Tasks

Wk7 Wk8 | WKk9 | wk10

Wk11

PPF Logic with Wrapper
Statistics and Timer

5. Finish Code

Testing

Revision

Review

6. Finish documentation
Code Documentation

Project Usage Documentation

XXX

XXXXX | XXXXX | XXXXX

XXXXX | XXXXX

XXXXX

XXXXX

XXXXX XXXXX

XXXXX
XXXXX

38

Chapter 10

Testing

10.1 Philosophy of Testing

Modules of the PPF will be tested at every step of the development process.
Our design will begin with skeleton code for the entire PPF. As each mod-
ule or subcomponent of the system is enhanced, the same black and white
box tests and integration tests will be done to ensure that the project has
maintained its integrity. During early stages of development, a oversimplified
pseudo physics package will be used to test the correctness of the PPF code.
As the project progresses actual physics problems with known results will be
used as a basis for integrated black box testing.

10.2 Testing by Subcomponent

e PPF Interface Testing for the interface will happen mainly during
integration testing. The purpose of the PPF Interface is to call the
correct subcomponent when an interface method is called. After each
of the subcomponents is tested for correctness, each of the interface
methods will be tested to ensure the correct subcomponent is called in
all preconceived scenarios.

e PPF _Statistics The PPF Statistics class will be tested as an individ-
ual component and when integrated with the timer. White box testing
will consists of creating debug files of all computations during trial runs
from a driver program. A debug file dump will allow us to trace through

39

the computations and verify correctness. Each statistical computation
will be tested on data sets with known answers to ensure correctness.
Illegal number usage (such as negatives) must be caught and filtered by
the software and hence these numbers and other bounds conditions will
be tested. Black box testing will consist of the PPF _Statistics package
integrated with PPF_Timer. During these tests it will be assumed that
PPF _Timer has already been tested. Tests will check final results after
exhaustive runs from a driver file.

e PPF Logic PPF _Logic may be the most difficult component to test. It
must be tested individually and integrated with the PPF_Parrallel_ Wrapper
class. Testing should include the following:

1. Ensure that domains and neighbor array lookup tables are loaded
correctly. Testing should include loading a mesh and physically
plotting out the neighbors to ensure correctness.

2. Ensure that particles are being sent to the correct domain. Each
particle tested must be identifiable by a unique ID so as to be
traceable. Each test should be from a contrived driver file, where
each particle destination is known before hand. This is one of the
most critical portions of the PPF and correctness must be ensured
to the best ability of the developers.

3. Ensure that the PPF _Logic only sends particles when enough par-
ticles are present to justify the message passing overhead. This
limit must be tested and may be a variable parameter within the
code. White box testing of particle numbers in each particle send
should be adequate for this.

4. During times when a node is saturated particles must be written
to disk to free up RAM. This can be tested by creating readable
ASCII files for each particle written and read to disk. After a run
from a driver file, each file should be checked to ensure that all
particles which were written to disk were read and moved correctly.
Obviously if the node crashes during a test, the PPF_Logic did not
handle the freeing of memory correctly.

e PPF _Parallel Wrapper Send and receive pairs must be tested for
correctness. Currently the PPF is planned to be run only on homoge-
neous distributed systems, however if it is ported to a heterogeneous

40

system, like a Linux beowolf cluster, byte ordering may be a problem.
During test runs, each send and receive should dump a debug file de-
tailing the exact byte data sent and received to ensure the data is not
being corrupted. This must be rigorously tested on all architectures
supported by the PPF.

41

