Site Locking and Alerting Mechanism for Doors (SLAM-Doors)

Christopher Son Aiden Seay Preston Smith

Ryan Todd

Sponsored by: **General Dynamics Mission Systems**

Client: Benjamin Walker

Team Mentor: **Bailey Hall**

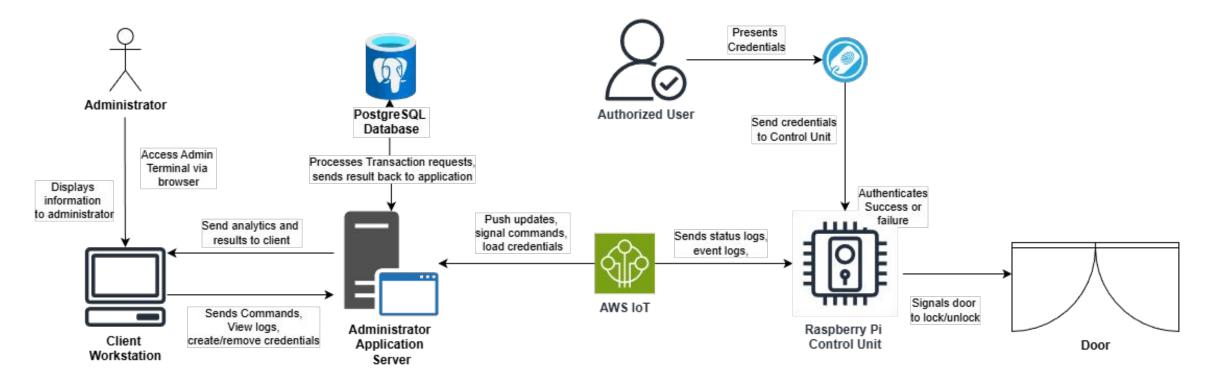
GENERAL DYNAMICS Mission Systems

Problem Statement

Coast Guard

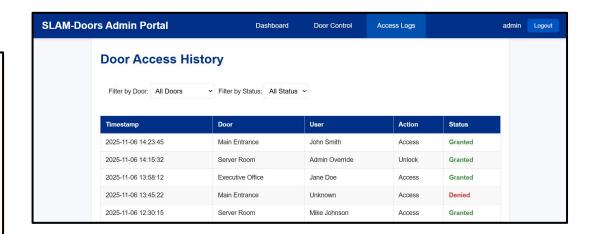
- 11 missions which contribute to the security of the United States of America
- Operates military facilities across the U.S.
- Needs to ensure access control to shelter, areas, and facilities

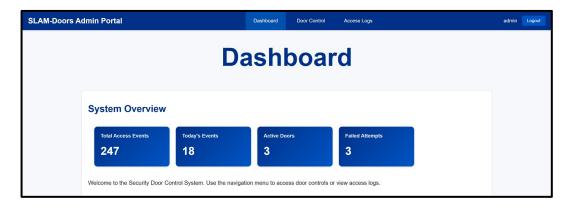
General Dynamics Mission Systems


- Uses Commercial Off-the-shelf (COTS) products to achieve secure access and control
- Current System's pitfalls
 - Unable to alert personnel of attempted access, unauthorized access, and external or internal attempts
 - Unable to save logs for audits
 - Unable to operate when power goes out

Solution Overview

Overhaul of the entire system


Key Requirements

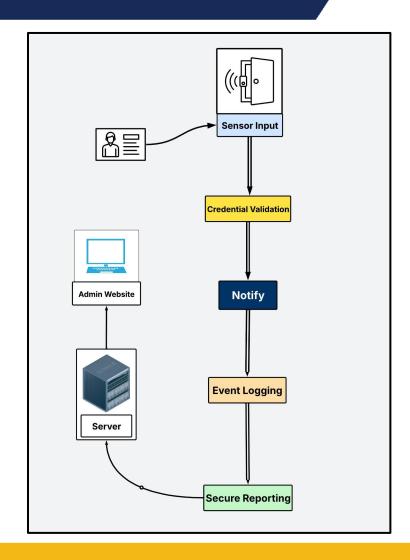

Requirements Development Process

- GDMS supplied a formal set of 15 system requirements defining security, functionality, and performance needs.
- Regular meetings with GDMS allowed us to clarify expectations and confirm our solution will align with their technical and security standards.
- Assessed current access-control documentation from GDMS to map out missing capabilities and define where enhanced logging, monitoring, and resilience are needed.

Minimum Viable Product (MVP)

- Secure authentication and access control.
- Intrusion-state monitoring and event reporting
- Reliable operation under high latency and outages.
- Encrypted communication and long-term event logging.

Requirements Breakdown


Access Events:

<u>High-Level Requirement:</u>

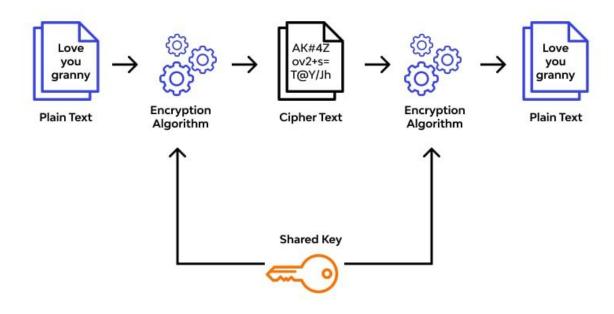
- "The system shall detect and classify access events as (no-access, authorized, or unauthorized.)"

Breakdown:

- 1. **Sensor Input** Monitor door status, intrusion events, and tamper signals.
- Credential Validation Confirm RFID card ownership and corresponding user record.
- 3. **Classify –** Determine access state: authorized, unauthorized, or no-access.
- 4. **Notify** Trigger cautionary alerts for unauthorized or abnormal events.
- 5. **Event Logging** Forward events to the central server and database, storing them locally only when connectivity is unavailable.
- 6. **Secure Reporting** Transmit classified events via encrypted communication channels.

Risks

This project deals with a key government institution, and with that comes many **security** and **reliability** concerns.


Security concerns

End to end encryption

Reliability concerns

- Backup power supply
- Redundant local storage

Symmetric Encryption

Source: https://www.wallarm.com/what/what-is-end-to-end-encryption

Feasibility

The technology and hardware have been thoroughly evaluated to ensure compatibility with the requirements of this system.

Amazon Web Services (AWS)

- Tool to host services
- Database, server, endpoints, etc.

Docker

- Containerized software
- Run on any system
- Simplifies updates

Schedule

Portcullis System Development Gantt Chart

TASKS	November 1-30	December 1-10	January 12-30	February 1-30	March 1-30	April 1-30	May 1-30
Database - Data Tables							
Database - Transactions							
Administrator Website - API							
Administrator Website - Admin Terminal							
Docker - Create configurable OS for Raspberry Pi Units							
AWS - Configure IoT Infrastrucutre							
Program Raspberry Pi Control Unit							
Integrate Hardware with Control Unit							
Integration							
QA I							

Conclusion

- The Coast Guard requires a solution that addresses various pitfalls of current COTS systems
- The Portcullis team plans to build a new system from the ground up, utilizing:
 - Raspberry Pi
 - AWS
 - Web Application
 - And more...
- The new system addresses the pitfalls by
 - Logging access events
 - Alerting users of intrusion detection/attempts
 - Custom Raspberry Pi control unit
 - Access control system continues operation with no network or power

Thank you

