

# **CRANCStorm**Introduction

<u>Project:</u> Cyclist Routing Algorithm for Network Connectivity

Client: Dr. Steven Gehrke

Faculty Mentor: Dr. Ana Paula Chavez

#### Team:

- Braydon Lamoreaux Team Lead
- Ethan Ferguson Release Manager
- Kristopher Thomas Architect
- Noelia Canela Recorder

<u>Focus Area:</u> Bicycle network connectivity, routing optimization, and mobile navigation for urban planning.

### **Problem Statement**

### **Importance of the Market**

- Bicycling reduces air pollution, health risks, and transportation costs.
- Adoption in the U.S. remains low due to safety concerns and poor bike network connectivity.
- Urban planners need accurate, datadriven tools to identify unsafe or inefficient routes.

### **Client Background**

- Dr. Steven: Assistant Professor Geography, Planning, and Recreation, Northern Arizona University.
- Client specializes in bike accessibility research, using routing tools to guide infrastructure investments.

### **Problem Statement**

#### **Current Pains**

- OSM Data File Bloat: Large, unfiltered datasets slow processing and limit scaling to more states.
- Limited Context: Current Isochrone map shows a reachable radius, but not specific locations.
- No Mobile Support: Field data collection and route logging are not possible.
- No Personalization: Users cannot save routes or view ride history.

#### **Motivation**

Improving CRANC will give transportation planners and cyclists a **powerful**, **scalable**, and **interactive tool** for understanding bike accessibility, identifying safety barriers, and potentially guiding multimilliondollar infrastructure decisions.

### **Solution Overview**

 A redesigned web + mobile ecosystem that improves routing performance, enhances visualizations, and supports real-time cyclist navigation and data collection.





### **Solution Overview**



## **GMNS - File Conversion**

Faster, Cleaner network data to support multi-state scalability



# Mobile App Development

Web-feature parity plus GPS logging, turn-by-turn narration, and offline routing.



# Enhance Isochrone

POI overlays showing reachable schools, jobs, grocery stores, etc.



### **User Profiles**

Save routes, track ride data, view analytics across devices.

### **Key Requirements**

#### **How Requirements Were Gathered**

- Bi-Weekly meetings with Dr. Steven (client).
- 2. Review of existing CRANC system + datasets (OSM and GMNS).
- 3. Analysis of past CRANC research publications and project documentation.
- 4. Brainstorming sessions and feasibility discussions with mentor.

#### High-Level Requirement: User Profiles

| 1        | Users can create and log into accounts.                     |
|----------|-------------------------------------------------------------|
| <u>2</u> | Routes can be saved to a personal account.                  |
| <u>3</u> | Ride history is synced between web and mobile.              |
| 4        | User preferences stored for personalized Isochrone queries. |

### **Key Requirements**

#### Most Important Functional (MVP) Requirements

| MUST        | Display Isochrone maps with integrated POI pins.          |
|-------------|-----------------------------------------------------------|
| <u>MUST</u> | Enable user profiles for route saving and ride analytics. |
| SHOULD      | Import and process GMNS datasets                          |
| SHOULD      | Mobile app with feature parity and responsive UI.         |
| SHOULD      | GPS ride tracking and metric calculation.                 |

#### **Closing Note**

These requirements form the **baseline**, and refinement will continue as development progresses and client feedback evolves.

### Risks & Feasibility



# Major Risks & Mitigations

- GMNS Conversion Errors: Validate outputs using known OSM samples.
- POI Overload Slowing Maps: Implement clustering + dynamic loading.
- GPS Inaccuracy: Apply filtering and correction algorithms.
- Cross-Platform Sync Issues:
   Centralized backend API handling sessions + data.



# Feasibility Findings

- GMNS significantly reduces processing overhead → scalable solution is feasible.
- Mobile mapping and voice navigation feasible using Mapbox SDK.
- Existing CRANC backend can support new endpoints with moderate refactoring.

### Schedule



#### Weeks 1-4

Mobile foundation + GMNS conversion pipeline



### **Weeks 9–12**

Mobile UI, GPS tracking, narration.



#### Weeks 5-8

Routing integration + POI-enhanced Isochrones



### Weeks 13-16

User profiles, integration testing, final polishing.



#### **Current Status**

- GMNS pipeline in progress.
- Mobile baseline UI started
- On track with planned milestones.

### **Key Takeaways**







### **Urban Cycling**

The project addresses critical challenges in urban cycling accessibility, supporting healthier and safer transportation planning.

### **Better Data**

Our solution modernizes CRANC with better data, richer visualizations, mobile navigation, and user personalization.

### **Clear Requirements**

Clear requirements and validated feasibility make the project well-positioned for success.

### **Next Steps**



### **GMNS**

Continue GMNS(General Modeling Network Specification) integration and mobile feature development.



#### POI

Begin POI visualization implementation and backend syncronization.



### **Social**

Prepare for end-semester client demo



### Conclusion

Our team is confident and committed to delivering a functional, impactful CRANC tool for bikers to use.