
1 

 

 Personalized Education: An AI-Integrated Web 

Application for Personalized Tutoring 

Software Testing Plan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sponsors: 

Dr. Andy Wang 

Sethuprasad Gorantla 

TutorTech: 

Chase Babb 

Ryley Fernandez 

Faith Ononye 

Shurie Kamewada 

Mentor: 

Paul Deasy 

 

April 4, 2025 

Table of Contents: 



2 

 

  

Introduction ————————————————————————— p. 3 

Unit Testing 
————————————————————————— p.  4 

Integration Testing 
————————————————————————— p. 9 

Usability Testing 
————————————————————————— p. 15 

Conclusion ————————————————————————— p. 19 



3 

 

Introduction 

TutorTech is developed for Metrology Research and Teaching Laboratory (MRTL) to 

personalize the learning experience of students as well as enhance student interaction with 

academic resources. This system allows students to securely sign up and log in, view course 

content, complete and submit assignments, receive grades, and track progress through an 

integrated dashboard. The primary goal of the platform is to optimize course engagement while 

incorporating AI-enhanced support and feedback. 

Software testing plays an enormous role in ensuring this platform is reliable, secure, and intuitive 

for students and instructors. Testing validates both the system’s correctness and the user 

experience, helping us identify issues in development. For this application, we will apply 

multiple forms of testing to ensure reliability and functionality. Unit testing will be used to verify 

that individual backend routes and logical units behave correctly. Integration testing will ensure 

that the major components of the system such as frontend UI, backend API endpoints, and 

database operations work together seamlessly. Usability testing will assess real user interaction 

and ensure the interface meets user expectations. 

Our testing approach will begin with unit testing, focusing on individual backend routes and 

logic, such as user signup and login authentication. These units are some of the platform’s core 

functionality, making them a priority for early validation. After verifying that each component 

performs as expected in isolation, we will proceed with integration testing across all major 

system boundaries, focusing on assignment submission, grading, chatbot integration, and session 

persistence which will evaluate how different modules interact with each other. Lastly, we will 

conduct usability testing, aimed at evaluating how effectively real users interact with the system. 

This phase will involve live demos and walkthroughs to gather necessary feedback.  



4 

 

We selected this structure to prioritize reliability in core functions (like authentication and 

submission) while also validating system-wide communication and user experience. The 

following sections will expand on our testing approach for each type of testing: unit, integration, 

and usability.  

 

Unit Testing 

Unit testing is the process of isolating and evaluating individual components or functions of a 

software system to ensure they behave as intended. These “units” are typically small, self-

contained blocks of code such as a function, method, or route, that can be executed and tested 

independently from the rest of the system. The primary goal of unit testing is to validate that 

each unit behaves correctly across a variety of valid and invalid input scenarios, thus ensuring 

correctness, reliability, and stability. 

For our application, unit testing plays a vital role in verifying the correctness of the backend API, 

especially for endpoints that directly impact the user experience and data integrity. Key 

operations such as user registration, login authentication, and assignment submission must work 

flawlessly, as these processes are core to user onboarding, content access, and grade tracking. 

We use Pytest as our primary testing framework due to its ease of use, readability, and 

compatibility with Flask applications. Flask’s built-in test client allows us to simulate HTTP 

requests and responses in a controlled environment without needing to launch the entire frontend 

or browser stack. This enables us to verify response status codes, validate JSON response 

structures, and assert that proper database operations are performed. 



5 

 

To ensure robust testing, we designed test cases based on equivalence partitioning, boundary 

value analysis, and robustness testing. Each unit was tested across expected (valid) input ranges, 

boundary-edge cases, and erroneous or missing input to simulate real-world usage patterns. 

1. User Signup (/signup) 

Purpose: 

Allow new users to register by submitting a unique user ID, valid email address, password, and 

personal details. 

Equivalence Partitions: 

● Valid: All required fields present, correct formats 

● Invalid: Missing required fields (e.g., no password), duplicate user ID/email, malformed 

email 

Boundary Values: 

● User ID length: test maximum 8 characters (allowed) and 9+ (rejected) 

● Password length: enforce reasonable minimum length (e.g., < 6 characters invalid) 

● Email format: test edge cases such as “user@” or “user@com” 

Test Scenarios: 

1. Successful registration with all valid fields 

2. Duplicate registration using existing user ID or email 



6 

 

3. Missing required fields (e.g., no password) 

4. Invalid email format (e.g., “useremail.com”) 

5. Password is hashed before storage 

Tools Used: 

● Pytest 

● Flask test client 

● SQL inspection for verifying hashed password format 

Success Criteria: 

● HTTP 201 returned on success 

● HTTP 400 for duplicate or malformed inputs 

● User data is stored correctly in student_information table 

● Passwords are hashed securely using bcrypt 

● Plaintext passwords are not stored or logged 

2. User Login (/login) 

Purpose: 

Authenticate existing users using stored credentials and start a secure session. 

Equivalence Partitions: 

● Valid: Correct email/password 



7 

 

● Invalid: Incorrect password, unregistered email, missing fields 

Boundary Values: 

● Short passwords (below minimum) 

● Invalid data types (e.g., numbers instead of strings) 

Test Scenarios: 

1. Login with correct credentials (email/password) 

2. Incorrect password 

3. Login with non-existent email 

4. Missing fields (email or password) 

5. SQL injection attempt (e.g., "admin' OR 1=1") 

6. Login fails if bcrypt hash does not match input password 

Tools Used: 

● Pytest 

● Flask test client 

● bcrypt.checkpw() for password verification 

Success Criteria: 

● HTTP 200 returned with user info and session cookie on success 

● HTTP 401 returned for all failed login attempts 



8 

 

● No user data is exposed on failure 

● Login only succeeds if bcrypt.checkpw() validates password 

3. Assignment Submission (/api/assignments/<id>/submit) 

Purpose: 

Allow students to submit assignment answers and receive feedback with a calculated score. 

Equivalence Partitions: 

● Valid: All answers provided, valid assignment ID 

● Invalid: Missing answers, wrong assignment ID, unauthenticated request 

Boundary Values: 

● Empty or partial answer object 

● Very long text answers 

● Incorrect data types (e.g., numbers instead of strings for text answers) 

Test Scenarios: 

1. Submit complete assignment with all answers 

2. Submit with no answers or some skipped 

3. Submit to non-existent assignment ID 

4. Submit without user ID or session 

Tools Used: 



9 

 

● Pytest 

● Mock submission payloads 

● DB inspection for grades table entries 

● Assertion of grading feedback in response 

Success Criteria: 

● Assignment is auto-graded and score is returned 

● Grade is saved in the database 

● HTTP 200 or 201 response with result details 

These units represent the foundational flow of a user in the system. Without reliable user 

registration or login, no access to courses or content is possible. Assignment submission is a core 

educational feature, tied directly to feedback and learning progress. Any issues in these routes 

would cause significant usability and data reliability concerns. 

 We chose not to include unit tests for backend features tied to Qdrant memory storage or AI 

response generation, as these rely on third-party APIs, embedding models, and semantic vector 

searches. These are better covered in integration testing, where their interaction with other 

components can be validated in full-system context. 

 Our unit testing approach combines rigorous scenario design (using equivalence partitions and 

boundary value analysis) with simple yet effective tools like Pytest and Flask’s test client. Each 

test simulates a realistic request to an isolated API route and checks for both expected and 

erroneous behaviors. These tests ensure system stability early in the pipeline, providing a 

dependable foundation for broader integration and usability testing later on. 

 



10 

 

Integration Testing 

 Integration testing is a critical part of the software testing life cycle. This particular aspect 

is focused on ensuring that all individual modules of an application function correctly when 

working in tandem. To be more specific, integration testing evaluates the interactions between 

different components; and is especially concerned with data flow, communication, interface 

interactions, etc. For our TutorTech platform, integration testing is especially important to ensure 

all of the intricate pieces function accordingly. The system’s complexity arises not just from the 

internal logic, but also from how the modules exchange data across the client-server boundary, 

interact with persistent databases, and manage user context throughout protected routes. Special 

focus was placed on preserving user experience through persistent state and enabling AI 

personalization. By validating these cross-cutting concerns, we established confidence in the 

“plumbing” that powers our LMS-like tutoring system. A few main goals of integration testing in 

this application were: 

● To verify that the data passed between the frontend and backend is accurate and correctly 

structured. 

● To ensure that user authentication and session persistence are consistently enforced 

across protected components. 

● To validate that dynamic content loading (e.g., enrolled courses, assignment data, chatbot 

responses) is executed properly with backend data sources. 

● To confirm that the chatbot and learning preferences system integrates smoothly with 

stored user profiles and delivers customized responses. 

The Integration testing approach was both manual and automated (where applicable) and 

prioritized boundaries between the following key module pairs: 



11 

 

1. React components & Flask API endpoints 

2. Frontend forms & backend validation/storage (e.g., preferences, login) 

3. Protected routes & session state (via UserContext) 

4. AI Chat system & Qdrant database memory 

5. Assignment submission & AI-enhanced grading logic 

6. Data retrieval methods & Relational database. 

Each test followed a specific procedure. First, the interface was identified (data input / output). 

Next, the assumptions and expectations were defined and formatted for that specific interaction. 

After that, either mock or real user input was used to trigger a subsequent reaction. From there, 

the system response was observed (success, failure, or error), and finally, the results are logged 

and / or the mismatch between modules is resolved. A more in-depth integration test plan for the 

individual modules can be observed below: 

1. User authentication 

Integration point: Login.js, UserContext.js, ProtectedRoute.js, and /login endpoint. 

Objective: Ensure users can log in and access protected routes using context from the 

backend to preserve the session. 

Test Steps: 

● Submit valid credentials from the login form. 

● Verify that a session cookie is stored and UserContext is updated. 

● Attempt to navigate to /dashboard and ensure access is granted. 

● Log out and confirm redirection to /login. 

 Test Harness: Browser DevTools and mocks for session API 

 Success Criteria:  



12 

 

● useUser() hook returns populated user object after login.  

● ProtectedRoute component renders children only when user context is populated. 

2. Learning preference and submission  

Integration point: LearningStyleQuiz.js to /save-preferences to PostgreSQL column 

learning_preferences. 

Objective: Ensure user selections in the learning style quiz are saved in the database and 

used later for AI customization. 

Test Steps: 

● Select options in the quiz and submit. 

● Intercept the network request to verify correct payload. 

● Check the database for saved preferences using SQL or print logs. 

● Navigate to the chat page, select “Custom” bot mode, and confirm the generated 

prompt reflects preferences. 

 Test Harness:  Browser DevTools, backend logging, test API endpoints. 

 Success Criteria: 

● JSON-encoded preferences are stored accurately. 

● AI prompt dynamically changes based on saved preferences in 

generate_prompt_from_preferences(). 

3. Assignments and automatic grading 

Integration Point: Assignment.js to /api/assignments/<id>/questions and /submit. 

Objective: Verify full interaction loop: assignment loads, the answers are submitted to the 

AI grading, the results are returned and are then stored in the database. 

Test Steps: 



13 

 

● Load a course page and begin an assignment. 

● Submit various question types (multiple choice, text). 

● Confirm backend processes grading and returns per-question feedback. 

● Check /api/grades/<user_id> endpoint for updated score. 

Test Harness: Console logs for AI grading, mock responses, database inspection, and UI 

assertions. 

Success Criteria: 

● Each answer maps to a question ID and is properly graded. 

● AI feedback reflects question keywords. 

● Final score updates on frontend and backend persist. 

4. Courses / Dashboard 

Integration Point: Courses.js, Dashboard.js, and /enrolled-courses/<user_id> 

Objective: Validate the user’s enrollment status and that their dashboard reflects current 

course enrollments. 

Test Steps: 

● Enroll a user in a course via /enroll. 

● Visit /dashboard and confirm that only enrolled courses are listed. 

● Confirm /courses show correct status (“Enrolled” or “Enroll” button). 

 Test Harness: Manual UI validation and console logs for fetched data. 

 Success Criteria: 

● Dashboard shows only enrolled courses tied to the current user session. 

● State updates immediately after enrollment. 

5. AI chat and memory search (both recent and semantic) 



14 

 

Integration Point: Chat.js to /api/chat to Qdrant memory layer. 

Objective: Ensure messages from the frontend are sent to the backend, semantically 

embedded, and stored in Qdrant for future context use. 

Test Steps: 

● Send a question via the chat component. 

● Confirm the backend receives and embeds message. 

● Log memory vector insertion. 

● Submit a vague follow-up and confirm relevant message pair is injected using 

vector similarity. 

Test Harness: Backend logs, manual chat UI testing, Quadrant CLI/API calls (or just vist 

Qdrant dashboard) 

Success Criteria: 

● Chat response includes contextually related memory entries. 

● Message embeddings stored and retrievable from Qdrant. 

6. Admin communication via contact us  

Integration point: Contact.js to EmailJS API 

Objective: Ensure that messages submitted via the Contact form are correctly sent 

through the EmailJS service and the user receives visual confirmation of success or 

failure. 

Test Steps:  

● Navigate to /contact and trigger the modal by clicking the envelope icon. 

● Fill out the form fields: name, email, subject, and message. 

● Submit the form and intercept the request sent to EmailJS. 



15 

 

● Verify success state (modal closes, user is redirected, and success alert is shown). 

● Simulate an error by entering invalid EmailJS credentials or disconnecting the 

network, then verify that an appropriate error message is displayed. 

Test Harness: Manual UI interaction, console monitoring and browser DevTools (for 

request/response tracking). 

Success Criteria: 

● All form fields are validated and required before submission. 

● The form uses the emailjs.sendForm() method with correct service and template 

IDs. 

● On success, the user is shown an alert and redirected to the homepage. 

● On failure, an error message is logged and displayed to the user. 

● No sensitive data is stored; messages are only passed through to the external mail 

service. 

 

Usability Testing 

Usability testing focuses on evaluating how real users interact with the system, and whether the 

interface, features, and workflows are understandable, efficient, and accessible. It is particularly 

important for end-user-facing platforms like TutorTech, where students and instructors may 

interact with complex functionality such as course enrollment, assignment submission, and AI 

chatbot tools. The goal is to identify friction points, improve the user experience, and ensure that 

users can achieve their goals with minimal confusion or frustration. 

For TutorTech, usability is central to success. Our target users include students and instructors 

within the Metrology Research and Teaching Lab (MRTL), who are generally tech-savvy due to 



16 

 

the advanced nature of their coursework. However, the platform still needs to be intuitive for 

first-time users, especially when navigating between dashboards, accessing assignments, and 

interacting with the AI bot. Our testing is designed to reveal interface ambiguities, layout 

inefficiencies, and areas where users may require more guidance. 

Feedback Sources and Justification 

 Our usability testing strategy includes feedback gathered from regular meetings with our project 

client and mentor, as well as in-class presentation sessions where we showcased prototypes and 

core features. These meetings function similarly to expert reviews, offering insights from 

stakeholders with technical and instructional experience. Our client has provided direction on 

what the platform should prioritize in terms of clarity and accessibility. 

We also proposed including a QR code on our final presentation, inviting students to sign up and 

explore the platform. This would allow us to observe how new users register, navigate, and use 

the system organically. Although this was not executed during development due to time 

constraints, it remains part of our long-term usability testing vision. We anticipate recording their 

interactions (with consent) and gathering informal feedback about clarity, speed, and perceived 

usefulness. 

Core Testing Areas 

1. Signup/Login Experience 

○ Goal: Ensure that new users can successfully register and log in without 

encountering unclear input fields or validation errors. 



17 

 

○ Evaluation: Observing whether users understand form labels, receive clear error 

messages, and are redirected correctly. 

2. Navigation Between Pages 

○ Goal: Confirm that users can move fluidly between dashboard, courses, 

assignments, and chatbot. 

○ Evaluation: Measure time taken to locate desired features; track user confusion or 

hesitation. 

3. Assignment Workflow 

○ Goal: Evaluate the clarity of assignment questions, answer input fields, and the 

grading feedback. 

○ Evaluation: Observe whether users complete submissions without guidance and 

understand their results. 

4. Chatbot Interaction and Response Time 

○ Goal: Assess how effectively the AI chatbot supports learning and whether its 

response time affects user satisfaction. 

○ Evaluation: During presentations and demos, users interacted with the chatbot and 

we recorded how quickly it responded. If delays occurred, we noted user 

reactions. Timely and relevant feedback is essential to ensure AI integration does 

not hinder usability. 

5. Error Handling and Alerts 

○ Goal: Confirm that all error states (e.g., missing answers, invalid input, failed 

submission) are gracefully handled. 



18 

 

○ Evaluation: Observe whether users are confused when errors occur or if the UI 

communicates the issue effectively. 

6. Accessibility and Visual Design 

○ Goal: Review the clarity of fonts, spacing, colors, and overall layout. 

○ Evaluation: Gather feedback on ease of reading, contrast, and responsiveness on 

different devices. 

7. Scalability and Load Conditions 

○ Goal: Evaluate whether the platform remains usable when multiple users are 

logged in simultaneously, such as during classroom-wide access or demo 

presentations. 

○ Evaluation: Monitor page load times, chatbot responsiveness, and database-driven 

queries to ensure no performance bottlenecks. 

Usability Testing Strategy and Timeline 

● Weekly Check-ins with Client and Mentor: 

○ Duration: Entire development cycle 

○ Method: Live walkthroughs, visual feedback, discussions about unclear or 

missing features 

● In-Class Presentation Testing: 

○ Duration: Mid-development and final phase 

○ Method: Simulated user interactions and live demos 

○ Output: Notes on interface issues, success stories, and feature requests 

● QR Code-Based Open Testing (Future Plan): 

○ Duration: Final project showcase 



19 

 

○ Method: Invite students to test the platform organically via a QR code on poster 

○ Output: Informal feedback on usability, signup clarity, and user flow 

All feedback will be compiled and reflected upon in our final evaluation, and major themes will 

be used to justify post-launch improvements. 

By covering these usability dimensions, from first impression and task clarity to system 

performance under realistic load, we ensure TutorTech delivers not only functional correctness 

but also a supportive, smooth learning experience tailored to our user base. 

  



20 

 

Conclusion 

TutorTech is designed with the goal of enhancing student engagement through AI-supported 

learning, personalized feedback, and seamless interaction with course content. As such, our 

testing strategy has been carefully structured to reflect these priorities, ensuring that critical 

functionality is reliable, integrations across components are seamless, and user experiences are 

smooth and intuitive. 

We began by validating individual backend routes through unit testing, focusing on essential 

processes such as user signup, login authentication, and assignment submission. These endpoints 

are foundational to the system’s functionality and user trust, and our tests accounted for 

equivalence classes, boundary conditions, and robustness against invalid inputs. 

We then expanded our scope through integration testing, where we evaluated the flow of data 

and logic across components such as the frontend UI, backend Flask APIs, and PostgreSQL 

database. Particular emphasis was placed on session persistence, AI-based chatbot 

communication, automatic grading, and EmailJS integration. These tests gave us confidence that 

the different parts of our platform interact consistently and correctly. 

Finally, we laid out a thoughtful usability testing plan that incorporates real feedback from 

clients, mentors, and end users. We focused on clarity, workflow, and responsiveness, especially 

during in-class demos and live walkthroughs, and proposed further testing opportunities at our 

project showcase through QR code access. Additionally, we considered the platform’s 

scalability, planning to observe user interaction under load and assess response times for time-

sensitive features like chatbot feedback. 



21 

 

Our testing process ensures that TutorTech is robust, user-centered, scalable, and ready to 

support students and faculty in a real-world academic setting. Through this multi-layered 

strategy, we’ve aligned our testing practices with the educational goals and technical needs of 

MRTL.  

 


