
Software Testing Plan
March 25, 2025

Lumberjack Balancing
Project Sponsor: Dr. Scot Raab

Project Mentor: Paul Deasy
Team Members: Riley Burke, Cristian Marrufo,

 Sergio Rabadan, Braden Wendt

1

Table of Contents

Introduction..3
Unit Testing.. 4
Integration Testing...8
Usability Testing.. 9
Conclusion... 11

2

Introduction

The Lumberjack Balancing application is a Python-based desktop tool developed to
automate and streamline faculty workload calculations for Northern Arizona University
(NAU). Designed for use by associate deans, the system ingests faculty data from Excel
spreadsheets, applies customizable workload policies, identifies edge cases, and
generates comprehensive, policy-aligned workload reports. Its core goals are to reduce
the manual burden of data analysis, improve accuracy in workload assessments, and
allow administrators to adapt quickly to evolving institutional policies.

Software testing is an essential phase of the development lifecycle, ensuring that the
system functions as intended, performs reliably under expected conditions, and meets
the defined requirements. At its core, software testing is about building confidence: in
the code, in the user experience, and in the trust that the final product will support its
users without failure. Testing helps uncover bugs, validates key functionality, and
confirms that performance metrics and usability goals are being met. Especially for
applications with critical decision-making roles, such as automating faculty workloads.
Robust testing is vital to prevent miscalculations, data integrity issues, and user
frustration.

Our testing plan for Lumberjack Balancing incorporates unit testing, integration testing,
and user acceptance testing. Each will be executed in different ways to validate key
modules and workflows.

● Unit testing will focus on the individual functions and classes within the data
processing module.

● Integration testing will ensure that the main menu, data processing, and data
visualization all work together.

● User acceptance testing will be conducted with our sponsor and will evaluate
usability, report clarity, and overall user experience.

In the sections that follow, we will present each stage of our testing process in detail,
outlining the strategies, tools, test cases, and expected outcomes for every type of
testing performed. This testing regimen reflects our commitment to quality, accuracy,
and usability in supporting NAU’s mission to improve faculty workload management.

3

Unit Testing

Unit testing is the process of testing individual components or “units” of a software
application in isolation to verify that each part functions correctly. The primary goals of
units testing are:

● Verify Correctness: Ensure that each method or procedure produces the
expected output given specific inputs.

● Facilitate Maintenance: Detect changes or regressions in functionality early as
code evolves.

● Document Behaviour: Provide a living specification of how the code is intended
to work.

For this project, we will use the unittest library in Python as our primary testing
framework. Additionally, we plan to use pytest for more complex test cases and
coverage.py to measure test coverage. Our test process will involve writing test cases
for both typical and edge cases, including valid inputs, boundary values, and erroneous
inputs to ensure robustness and correctness.

Lumberjack Balancing is divided into several modules, the critical units we plan to test
and their respective equivalence partitions and boundary values are detailed below:

1. Row Validation Function
● Equivalence Partitions:

○ Valid Rows: Rows with all required fields present.
○ Invalid Rows: Rows missing any of the common fields or for certain

courses, missing meeting details.
● Boundary Cases:

○ A row where a numeric field is exactly 0.
○ A row with borderline valid date/times field.

● Test Inputs/Examples:
○ Provide a row with complete and correct data to ensure it returns

True.
○ Provide a row missing one of the common fields to ensure it returns

False.
○ Provide a row for a research course that is missing meeting details

(research courses do not require explicit meeting information) and
ensure it still returns True.

● Error Handling:

4

○ Test with null values and unexpected types to confirm the function
handles them correctly.

2. Course Class Methods

For each method in the course class, we will define test cases as follows:

● getGroupKey()
○ Equivalence Partitions:

■ Courses with complete course identifiers (term, subject, catNbr,
section).

■ Research courses, team-taught, and co-convened courses.
○ Boundary Cases:

■ Missing optional fields such as section or meeting details.
○ Test Input/Examples:

■ A research course row should return a key that includes the
instructor ID, term, subject, and the research tag.

■ A team-taught course should group by meeting details.
■ A co-convened course should be grouped by instructor and course

identifiers.
● getBaseRate()

○ Equivalence Partitions:
■ Courses that are independent study, research, or fieldwork.
■ Laboratory courses.
■ Lecture/recitations/seminar courses.

○ Test Inputs/Examples:
■ Verify that a course with “laboratory” in its category returns the

laboratory rate.
■ Verify that a research course returns the independent study rate.
■ Verify default rate for a course that does not match any special

keywords.
● adjustForEnrollment(baseRate)

○ Equivalence Partitions:
■ Enrollment below, at, and above threshold boundaries (90, 150,

200).
○ Boundary Cases:

■ Enrollment exactly at 90, 150, and 200.
○ Test Inputs/Examples:

■ For a lecture course with enrollment of 89, verify that the base rate
remains unchanged.

■ For enrollment of 90, 150, and 200, verify that the rate is
interpolated correctly by using the linear interpolation formula.

5

● calculateLoad()
○ Equivalence Partitions:

■ Courses with zero enrollment.
■ Courses with valid enrolment and max units.
■ Courses with extra load applied for special cases.

○ Boundary Cases:
■ Maximum load should not exceed the cap of 5 for research

courses.
○ Test Inputs/Examples:

■ Verify that a course with enrollment of 0 returns a load of 0.
■ Verify that the load is computed as maxUnits * adjustedRate for a

typical lecture course.
■ Verify that if the course qualifies for an extra load, the extra value is

added.
● adjustLoadDivision(count)

○ Equivalence Partitions:
■ A course load is divided by the number of instructors (count > 1).

○ Test Inputs/Examples:
■ For a team-taught course with a computed load of 10 and count

equal to 2, verify that the new load is 5.
● Error Handling:

○ Test methods with erroneous inputs such as non-numeric enrollment to
ensure robust error management.

3. FacultyMember Class Methods
● addCourse(course)

○ Test Inputs/Examples:
■ Verify that adding a course with a unique group key stores it in the

faculty member’s courses.
■ Verify that adding a duplicate course (same group key) does not

duplicate the entry.
● calculateTotalLoad()

○ Test Inputs/Examples:
■ Create a faculty member with several courses, and verify that the

total load equals the sum of individual course loads.
■ Test with courses having load equal to 0 and non-zero loads.

● calculatePercentage()
○ Equivalence Partitions:

■ TT (Tenure Track) faculty: baseline 30 (60 for AY).
■ CT (Career Track) faculty: baseline 40 (80 for AY).

○ Boundary Cases:

6

■ Test when total load is exactly at the baseline and when it exceeds
the baseline.

○ Test Inputs/Examples:
■ Verify that a TT faculty with a total load of 30 returns 100%.
■ Verify that a CT faculty with a total load of 40 returns 100%.
■ Verify that overload percentages are computed correctly.
■ Verify that underload percentages are computed correctly.

7

Integration Testing

Integration testing ensures that the interfaces between major modules work together
correctly. Rather than testing individual functions in isolation, integration tests focus on
the “plumbing” to ensure that data passed between modules, file interfaces, and
inter-module procedures are maintained.

The primary integration testing goals for our application are the following:

● Confirm that data read from external sources such as Excel files, are correctly
parsed and handed off to the appropriate processing modules.

● Validate that interfaces between modules, and specifically the loader functions,
correctly exchange parameters and return values.

● Detect issues in the wiring that may appear during unit testing of isolated
components.

● Policy and Data Loading Functions
● Equivalence Partitions:

○ Valid File Input: Excel file with correct policy values.
○ Invalid File Path/Format: Missing or incorrectly formatted files.
○ Partial Data: Files with some missing or empty cells.

● Boundary Cases:
○ A file that contains exactly the minimum required number of

rows/columns.
○ Values that are exactly at the boundary, specifically pertaining to

the threshold values indicating enrollment totals.
● Test Inputs/Examples:

○ Verify that loadWorkloadPolicy returns the default policy when the
file cannot be read.

○ Verify that loadInstructorTrack correctly builds a dictionary when
provided a valid Excel file.

○ Verify that loadSpecialCourses returns an empty set when no
valid courses are provided.

● Error Handling:
○ Test that the functions log errors and do not crash when given an

invalid path or file format.

8

Usability Testing

Usability testing is a method of evaluating how effectively and comfortably real users
can interact with a software application. Unlike other forms of testing that focus on
technical correctness or performance, usability testing is centered on the user
experience. Its primary goal is to determine whether users can successfully complete
tasks within the system, how efficiently they do so, and how satisfied they are with the
overall interaction. This process typically involves selecting representative users—those
who reflect the actual audience of the application—and asking them to perform realistic
tasks while observers monitor their behavior, note points of confusion or frustration, and
collect feedback. Usability testing helps uncover issues related to navigation, interface
clarity, workflow logic, and general ease of use. For applications like Lumberjack
Balancing, which are intended for non-technical administrative users, usability testing is
especially critical. It ensures that the application is not only functional but also intuitive,
accessible, and efficient to use. By addressing usability concerns early, a development
team can improve adoption, reduce training needs, and create a smoother, more
productive experience for its users.

Given the nature of our application and its intended users, usability testing is a critical
component of our overall testing strategy. Lumberjack Balancing is designed for
administrative personnel and associate deans at Northern Arizona University, many of
whom may not have a technical background. Therefore, ensuring that the application is
not only functional but also intuitive, accessible, and easy to navigate is essential for
adoption and long-term success. Because this software will be used to support
high-stakes, policy-driven decision-making, the interface must support accurate task
completion without confusion or unnecessary complexity.

With this in mind, we’ve opted for a targeted and feedback-driven usability testing
approach, focusing on realistic user studies and expert feedback rather than large-scale
generalized testing. Our primary subject for this testing is our client, Dr. Scot Raab, who
represents the primary user base and possesses deep familiarity with the current
manual workload process. His feedback provides both a high-level administrative
perspective and practical insights from daily use cases. We believe that working closely
with a domain expert throughout development is more impactful than broad, shallow
testing with unfamiliar users. However, to supplement this, we will also perform peer
walkthroughs and short focus-group-style demonstrations with fellow students and
mentors to identify any unexpected usability friction from fresh perspectives.

Our usability testing plan consists of the following key components:

9

Expert Review (1 session)

● Participant: Dr. Scot Raab (Client and Associate Dean)
● Format: A guided walkthrough of the current version of the application,

highlighting all major workflows (uploading files, configuring policies, generating
reports).

● Goals: Identify unclear interface elements, confusing terminology, and steps that
may require further instruction or reordering.

● Timing: Early April
● Data Collection: Notes taken by team members and post-session discussion.
● Analysis: Feedback will be compiled into action items prioritized by severity and

feasibility for immediate iteration.

Acceptance Testing Session (1 session)

● Participant: Dr. Raab
● Format: Final version of the application is presented and used in a fully

self-directed way to complete key administrative tasks.
● Goal: Confirm that the software is usable and satisfactory in its final state and

meets the original client expectations.
● Timing: Final week before delivery.
● Data Collection: Client feedback and final approval signature or revision notes.
● Analysis: Used to make final polishing adjustments before submission.

This usability testing process spans from early March through early April, overlapping
with our general testing and polishing phases. By concentrating our efforts on qualitative
data collection, real-world usage feedback, and one-on-one expert reviews, we’re
ensuring the interface is tailored specifically to NAU’s context. The decision to keep the
testing scope focused but highly representative stems from the fact that the application
will be used by a small, well-defined user group with specific needs. Our limited but
meaningful testing sessions will allow for deep insights, fast iteration, and a well-tuned
user experience.

10

Conclusion

The Lumberjack Balancing software testing plan has been thoughtfully designed to
ensure the delivery of a reliable, accurate, and highly usable application for Northern
Arizona University. Through a comprehensive combination of unit testing, integration
testing, and usability testing, we have addressed the system’s core technical
functionality, its inter-module cohesion, and the overall user experience. Unit testing will
allow us to verify that each individual function performs as intended across a range of
normal and edge-case scenarios, while integration testing ensures the application’s
core modules—data ingestion, processing, and visualization—work together seamlessly
and robustly.

Our usability testing strategy reflects the practical reality of our target users:
non-technical administrative staff who rely on this software to support high-stakes
workload decisions. By working directly with our client, Dr. Scot Raab, and conducting
real-world usage reviews and acceptance testing, we are able to gather meaningful
qualitative feedback that directly informs design decisions. This targeted, context-aware
approach is more effective than generic user testing in this case, as it prioritizes
relevance, clarity, and task efficiency for the actual stakeholders.

Altogether, this testing plan provides layered coverage across the system’s technical
and experiential dimensions, ensuring that the final product is not only functionally
correct but also intuitive, resilient, and trustworthy. By identifying potential issues
early and resolving them through focused, iterative feedback, we are confident that
Lumberjack Balancing will be a dependable tool for automating faculty workload
assessments at NAU. The following sections of this document outline the detailed
testing procedures, test cases, and metrics that will guide this process and ensure
quality throughout the final stages of development.

11

	Introduction
	

	Unit Testing
	

	Integration Testing
	
	Usability Testing
	Conclusion

