

User Manual
Version: 1.0

Team: INSIGHT
Sponsor: Mike Taylor

Faculty Mentor: Scott Larocca
Team Members:

Joshua VanderMeer, Michael Vertin,
Aidan Hebert, Forrest Hartley​

Date: 5/9/2025

1.​ Introduction
This user manual aims to serve as a comprehensive guide to installing, configuring, and
using the SCA Image Search Tool for the Cline Library Special Collections and Archives
(SCA) at Northern Arizona University. Designed to streamline the process of identifying
and researching archival images, this tool integrates modern machine learning
techniques with a user-friendly web interface. We thank you for using our tool and hope
it offers years of service for the SCA and Cline Library!

The manual is divided into two main usage sections: Non-Admin Use, and Admin Use.
The Non-Admin section explains how everyday users, such as researchers, librarians,
and staff, can access the web application, conduct image searches, and understand the
tool’s functionality. The Admin section provides detailed technical instructions for system
setup, including server installation, dependency management, microservice
maintenance, and troubleshooting.

Whether you're a casual user exploring the large collection of archival images or an
administrator managing backend services, this document will walk you through every
necessary step to ensure successful deployment and continued system use.

2.​ Non-Admin Use
2.1.​ Accessing the website

This section is intended for end users such as researchers, librarians, and SCA staff
who will interact and access the web interface with the Reverse Image Search Tool. No
coding or backend setup is required to use the tool effectively. All that is needed is a
device with internet access and a modern web browser (e.g., Chrome, Firefox, or
Safari).

Open a Browser​
 Launch any modern browser (Google Chrome recommended for best performance).​

Navigate to the Web Application​
 In the address bar, enter the following URL:​
 https://insight.library.nau.edu ​
 This will direct you to the homepage of the Reverse Image Search Tool.​

Upload an Image

https://insight.library.nau.edu

●​ Click the "Choose File" button to select a local file from your device.​

Run the Search​
Once your image is uploaded and viewable in the viewfinder, click "Search". The
system will process the image and return a list of similar items from the SCA archive.​

View Results

●​ Each result will display a small thumbnail of a similar image, allowing the user to
interact with each result by clicking. This will then redirect the user to the
ContentDM page, where the metadata can be viewed.​

●​ You can scroll through these results or refine your search by uploading a different
image or by enabling explore mode.

2.2.​ Explain functionality

The SCA Image Search Tool was designed to help users identify and explore archival
items from NAU’s Special Collections and Archives using visual similarity. Instead of
relying on keywords or titles, users can upload an image and let the system find related
materials by analyzing visual features. This approach is especially useful for unlabeled,
misidentified, or visually complex items where text-based search may fall short.

Key Features:

●​ Image Upload & Processing:​
 Users can upload an image from their local device. The tool automatically
processes the image using a machine learning model, which generates a
high-dimensional vector representing the visual content.​

●​ Visual Similarity & Non-Similar Search:​
 The vector created from the uploaded image is compared against a database of
vectors from SCA’s digital image collection. The system calculates similarity
using cosine similarity, then ranks and returns the closest matches. The opposite
of this feature is also present, enabling users and researchers to see what may
be considered the most “non-similar” to what they are seeking.​

●​ Search Results Page:​

○​ Results are shown as image thumbnails with basic metadata (e.g., title,
ID, collection).​

○​ Each result includes a clickable link that directs users to the item’s full
page in the ContentDM system, allowing access to full metadata and
downloadable versions when available.​

○​ Results are displayed in order of relevance based on visual similarity.

●​ Explore Mode:​
Explore mode enables users to search with images they may have already found
within the SCA collections. This feature can be enabled with the toggle on the
main page. Once enabled, the user can click on any image returned from a prior
search to now act as the new search. Preventing the user from having to
download an image they found to use it in a new search manually.

●​ Responsiveness & Accessibility:​
 The tool is designed to work on various screen sizes, including tablets and
mobile devices. The tool can also have the number of images returned be
dynamically altered via the slider on the home page.​

Use Case Examples:

●​ A librarian finds a historic photo with no label and wants to identify similar images
in the archive.

●​ A researcher uploads a map fragment to locate other geographic records with
similar visual layouts.

●​ A student browsing historical photos uploads a unique image to discover more
from the same era or photographer.​
​

●​ A curious individual finds, photographs and uploads an image belonging to the
SCA to pinpoint it in their collection and retrieve its item number and metadata.

3.​ Admin Use
How to install all dependencies on an EC2 instance
For the purposes of this section, the directory where Linux commands are run will be
the project directory unless specified otherwise. (ie
~/myenv/INSIGHT-SCA-Search-Tool/)

3.1.​ Connect to Your EC2 Instance

ssh -i your-key.pem ubuntu@your-ec2-public-ip

3.2.​ Update Package Lists and Install Base Tools
●​ Ensure apt is up to date → Needed to install all Linux packages

sudo apt update

●​ python3-pip → Needed to install Python packages.
 ​ ​

sudo apt install -y python3-pip

●​ python3-venv → Needed to create virtual environments.

sudo apt install -y python3-venv

3.3.​ Create a Python Virtual Environment
●​ Create a folder myenv/ in your home directory.

python3 -m venv ~/myenv

3.4.​ Activate the Virtual Environment

source ~/myenv/bin/activate

●​ You should now see (myenv) in front of your terminal prompt.
●​ (Important!) From now on, always activate this before running Python

code!
3.5.​ Upgrade pip (optional but recommended)

pip install --upgrade pip

3.6.​ Install Required Python Packages

Module Why it's Needed Install via
flask Running the Flask apps (vectordb_app.py,

service_control_app.py)
pip install flask

flask_cors Cross-Origin Resource Sharing (CORS) in
Flask apps​

pip install flask-cors

pymilvus Connecting to Milvus vector database​ pip install pymilvus

transformers Loading Vision Transformer model
(embedding_model.py)​

pip install transformers

torch PyTorch (needed for inference with ViT
model)​

pip install torch

pillow(PIL) Image loading and manipulation
(image_reference.py)​

pip install pillow

boto3 Fetching images from AWS S3 buckets
(image_reference.py)​

pip install boto3

requests Fetching images via HTTP (e.g., CDM
image loading)​

pip install requests

Module Why it's Needed Install via
flask Running the Flask apps (vectordb_app.py,

service_control_app.py)
pip install flask

numpy Array manipulation and vector
normalization​

pip install numpy

Now, install all source code using whatever method you have access to
into the /myenv directory.

How to install all Node packages
Step 1: Check if Node.js is Already Installed

Run this in your terminal:

node -v
npm -v

If you see the version numbers, Node.js and npm have already been installed. If not, proceed to
step 2.

Step 2: Download and Install Node.js

Option A: Install from Node.js Website (Recommended for Most Users)

1.​ Go to: https://nodejs.org
2.​ Download the LTS (Long Term Support) version for your OS (Windows, macOS, or

Linux).
3.​ Run the installer and follow the steps. Make sure to check the box that says "Add to

PATH".

Option B: Install via Command Line (Linux/macOS)​
For Ubuntu/Debian:

curl -fsSL https://deb.nodesource.com/setup_18.x | sudo -E bash -

sudo apt-get install -y nodejs

https://nodejs.org

Step 3: Verify Installation

After installation, run:

node -v
npm -v

​
to verify that node and npm have been installed successfully

Step 4: Install all Node Packages

Go to your project directory website/:

cd path/to/your/project

If your project has a package.json, just run:

npm install

Go to your project subdirectory website/client:

npm install

Go to your project subdirectory website/server:

npm install

Step 5: Build Frontend application (for first install or changes to the code)

Go to your project subdirectory website/client:

npm run build

Once the code base is installed on the EC2 in the myenv/ directory

Config .env file for settings
Must add a file named .env to the client folder containing these two lines of code:​

REACT_APP_IP=IP_OF_EC2_INSTANCE
IP=IP_OF_EC2_INSTANCE

Important: Replace IP_OF_EC2_INSTANCE with the real IP address of the EC2 instance.

Configure Certbot settings

If you haven’t already:

sudo apt update
sudo apt install certbot python3-certbot-nginx

Complete all steps in the Config file for NGINX settings

Run this one-liner (no need to stop Nginx):

sudo certbot --nginx -d insight.library.nau.edu

Certbot will:

●​ Generate and install your SSL certificate​

●​ Automatically update your Nginx config​

●​ Enable redirection from HTTP → HTTPS​

●​ Set up auto-renewal​

When prompted:

●​ Choose to redirect all traffic to HTTPS (usually option 2)

Auto-Renew Check (optional)

Certbot already adds a cron job, but to test it:

sudo certbot renew --dry-run

Config file for NGINX settings

Configure

sudo nano /etc/nginx/sites-available/insight

Replace with:

server {
 server_name insight.library.nau.edu;

 client_max_body_size 20M;

 root /home/ubuntu/myenv/INSIGHT-SCA-Search-Tool/client/build;
 index index.html;

 location / {
 try_files $uri /index.html;
 }

 location /api/ {
 proxy_pass http://localhost:5000/;
 proxy_http_version 1.1;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }

 listen 443 ssl; # managed by Certbot
 ssl_certificate
/etc/letsencrypt/live/insight.library.nau.edu/fullchain.pem; #
managed by Certbot
 ssl_certificate_key
/etc/letsencrypt/live/insight.library.nau.edu/privkey.pem; # managed
by Certbot

 include /etc/letsencrypt/options-ssl-nginx.conf; # managed by
Certbot
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed by
Certbot

}
server {
 if ($host = insight.library.nau.edu) {
 return 301 https://$host$request_uri;
 } # managed by Certbot

 listen 80;
 server_name insight.library.nau.edu;
 return 404; # managed by Certbot
 client_max_body_size 20M;

}

Test and restart Nginx:

sudo nginx -t
sudo systemctl restart nginx

Set up Docker:

Install docker from https://docs.docker.com/engine/install/

Installing PM2 and checking logs

npm install -g pm2

List and access logs

pm2 list
pm2 log <PM2_ID>

https://docs.docker.com/engine/install/

Managing Microservices

Starting the system:

cd into the base of the project
pm2 start python --name "service-control" -- service-control/service_control_app.py

Components:

There are four microservices in the system:

1.​ vectordb: Controls high-level interactions with the vector database
2.​ website: Hosts the UI that researchers will use to search through the SCA collections
3.​ milvus: Provides access to milvus’ database
4.​ service-control: Keeps all other services running

scripts/services.py provides quick access to restarting or stopping the microservices (excluding
service-control)

Restarting a microservice:

This will stop the microservice if it is already running, then start that microservice. This operation
can take 1-2 minutes to fully complete.

python scripts/services.py reset <component_name>

Stopping a microservice:

To stop the microservice and prevent it from automatically restarting, run:

python scripts/services.py kill <component_name>

The following shows how to undo the previous command. This operation can take 1-2 minutes
to fully complete.

python scripts/services.py unkill <component_name>

Getting the status of a microservice:

This will display if the microservice is currently running, and if it has been killed (see stopping a
microservice)

python scripts/services.py status <component_name>

How to insert images into the vector database

Uploading the metadata file

Format: Metadata files are expected to be a tab-delimited file with the ID of the item in the 66th
column of each row. For example, if the ID was 1384, it would be used to reference the item at
https://cdm16748.contentdm.oclc.org/digital/collection/cpa/id/1384.

Uploading: Any uploading application can be used to transfer the metadata file from a local
machine to the EC2 instance. The metadata file should be uploaded into
~/myenv/INSIGHT-SCA-Search-Tool/metadata/

python scripts/services.py status <component_name>

Inserting the metadata

python scripts/insert_cdm_metadata_file.py metadata/<file name>

Note: This inserts metadata in batches of 1024 items, and each can take 20-60 minutes. If
machine resources are too low, the process may be delayed to give Milvus more time to
compress its content.

Viewing the insertion progression

python scripts/data_check.py

The “num_entities” field is the amount of items currently in the database. ​
The “remaining batches” field is the amount of batch files waiting to be processed. When this
number is 0, all batches have been inserted. Note that this does not include failed metadata.

Failed metadata

vim insert-service/metadata/failed-metadata.txt

If failed-metadata.txt does not exist or is empty, this means all items were successfully inserted.

The main causes of metadata failure are:​
1. The CDM ID does not point to a valid item in the ContentDM. It must be possible to get an
image using this ID. For example, 1384 would be used to get the image at
https://cdm16748.contentdm.oclc.org/utils/getthumbnail/collection/cpa/id/1384. ​

https://cdm16748.contentdm.oclc.org/digital/collection/cpa/id/1384
https://cdm16748.contentdm.oclc.org/utils/getthumbnail/collection/cpa/id/14

2. ContentDM is not responding to HTTP requests. This is likely the reason for a large number
of items present in failed-metadata.txt.

The insert-service will automatically attempt to reinsert the metadata in this file after all other
batches have been inserted.

Expanding the database

Data persistence

After an item is entered into the database, that item will stay there until it is removed (through
milvus_clear.py or restoring a backup).

Adding new data

To add additional items into the system, store the metadata for those new items into a new
metadata file, and repeat the steps in 'How to insert images into the vector database' with that
file. If one item needs to be added, the metadata file for that item should only contain one line.

Note that if any metadata in the new file matches existing items in the system, that metadata will
not be inserted, although it will take time.

Resources

The first 120k items required ~675MB of disk space after automated compression. As more
items are added to the database, an upgrade to available disk space will eventually be required.
A backup will double the used disk space.

To view the memory used by milvus, run:

sudo du -h --max-depth=1
~/myenv/INSIGHT-SCA-Search-Tool/docker/volumes/minio/a-bucket/files | sort -h

There is a 2MB disk and ram availability check that must be passed before additional items are
inserted. The intent is to reduce the chance of resource issues, but this lowers the amount of
items that can be saved in the system.

The MIN_RAM_GB and MIN_DISK_GB constants can be found in insert-service/insert_app.py.

Creating a database backup

NOTE: Any uninserted metadata batches are at risk of being lost if the insertion microservice is
inserting items after the backup is made. It is recommended that the insertion is done running
when there is a backup to avoid missing metadata. (see “viewing the insertion progression”)

Stopping the milvus microservice

python scripts/services.py kill milvus

Wait 1-2 minutes to ensure Milvus has fully stopped.

Creating the backup

cd docker
sudo tar -czf volumes-backup.tar.gz volumes
cd ..

Restarting the Milvus microservice

python scripts/services.py unkill milvus

Using the database backup

NOTE: This will delete the current database. Any data inserted after the backup was created will
not be recoverable after running these steps.

Stopping the milvus microservice

python scripts/services.py kill milvus

Wait 1-2 minutes to ensure Milvus has fully stopped.

Replace the current database with the backup

cd docker
sudo rm -r volumes
sudo tar -xzf volumes-backup.tar.gz
cd ..

Restarting the Milvus microservice

python scripts/services.py unkill milvus

Troubleshooting

Running out of memory

This might never occur due to memory checks and providing Milvus more time to compress
data. Running out of disk space will often result in the EC2 instance crashing and the Docker
microservice failing to start.

Stopping the milvus microservice

python scripts/services.py kill milvus

Deleting the index

sudo rm -r
/home/ubuntu/myenv/INSIGHT-SCA-Search-Tool/docker/volumes/minio/a-bucket/files/index_fi
les

Restoring the index

sudo systemctl status docker
sudo systemctl start docker
cd docker
docker-compose up -d
cd ..

python scripts/data_check.py debug
collection.create_index("embedding", {"index_type": "IVF_FLAT", "params": {"nlist": 128},
"metric_type": "IP"}) # see vectordb-service/vector_database.py for the most updated index
collection.load()
exit()

No step in this process should take more than one minute. If it takes more than one minute to
run or any error is experienced, restart this process. (In our experience this has never needed to
be run more than twice.)

Rerunning the Milvus microservice

python scripts/services.py unkill milvus

4.​ Conclusion
We hope that this Reverse Image Search tool greatly enhances your experience and
productivity at NAU’s Cline Library Special Collections and Archives. Our goal was to deliver a
user-friendly solution that leverages state-of-the-art machine learning technologies from
HuggingFace and PyTorch to make accessing and exploring your extensive archives seamless
and intuitive.​
​
It has been our sincere pleasure and privilege to collaborate with you on this project. Our team
is excited to have developed a tool that not only preserves history but also empowers
researchers and supports the dedicated staff overlooking the Special Collections and Archives.
We wish you many productive and insightful years using this solution and are confident that it
will advance your mission of safeguarding and sharing invaluable archival resources.

While our team is moving forward into our professional careers, we remain available in the
coming months for any brief questions or guidance you may need to ensure optimal deployment
and smooth operation of the system within your organization.

With best wishes from your Reverse Image Search developers:

●​ Joshua Vandermeer – vandermeer.joshc@gmail.com
●​ Michael Vertin – msv68@nau.edu
●​ Forrest Hartley – forresth2000@gmail.com
●​ Aiden Herbert - arh752@nau.edu

Thank you again for the opportunity to contribute to the important work of the SCA.

mailto:vander.joshc@gmail.com
mailto:msv68@nau.edu
mailto:forresth2000@gmail.com
mailto:arh752@nau.edu

	User Manual
	1.​Introduction
	2.​Non-Admin Use
	2.1.​Accessing the website
	2.2.​Explain functionality
	Key Features:
	Use Case Examples:

	3.​Admin Use
	3.1.​Connect to Your EC2 Instance
	3.2.​Update Package Lists and Install Base Tools
	3.3.​Create a Python Virtual Environment
	3.4.​Activate the Virtual Environment
	3.5.​Upgrade pip (optional but recommended)
	3.6.​Install Required Python Packages
	How to install all Node packages
	Step 3: Verify Installation
	Step 4: Install all Node Packages
	Step 5: Build Frontend application (for first install or changes to the code)

	Config .env file for settings
	Configure Certbot settings
	Auto-Renew Check (optional)
	Config file for NGINX settings
	Configure

	Installing PM2 and checking logs
	Managing Microservices
	How to insert images into the vector database
	Expanding the database
	Creating a database backup
	Using the database backup
	Troubleshooting
	Running out of memory

	4.​Conclusion
	

