
1

Team HelloWorldByMe

Software Design Document

Version 1

January 17th, 2025

Project Sponsor:

Kevin Daily

Faculty Mentors:

Brian Donnelly

 Savannah Chappus

Team Members:

Elizabeth Knight

Joey Banaszak

Jessica Maldonado Olivas

Samantha Madderom

2

Table of Contents

Introduction.. 3

Implementation Overview... 4
Architectural Overview..7
Module and Interface Descriptions.. 10

Implementation Plan... 16

Conclusion...18

3

Introduction
Chronic homelessness is a significant issue, particularly in Tucson, Arizona.

Between 2019 and 2020, there was a 300% increase in homelessness in Pima County.

When it comes to helping the homeless, many organizations offer services to these

people. However, they are often working individually toward the same goal. There should

be more collaboration among these entities. Our project aims to provide a method for

breaking down the silos of communication that exist between these companies. We will

also allow for the compilation of the data collected on the people they serve and interact

with for funding and research. Our solution will be focused on Pima County, with the

ability to be scaled to larger areas and industries in the future.

Through our solution, nonprofits can employ "Navigators" who go out into the

community, gather information on individuals experiencing homelessness due to drug

addiction and mental health issues, and connect them with available services. Our project

aims to streamline this process by providing a system that allows Navigators to update

and access a shared database of the people they interact with. This ensures that, if

someone has been previously engaged, their information is readily available to assist in

future interactions. Additionally, shelters will be able to update the database with

real-time information on available beds, enabling Navigators to secure spots in advance

for individuals in need. Shelters can also log details about the services they offer, such as

support for overcoming addiction or mental health care. Available services and collected

demographic information on those in need will not be segregated by organization, instead,

all organizations will be connected and sharing information. In this way, we hope to break

down some silos of communication.

Moreover, the data collected will be shared with local government agencies to contribute

to existing research and secure funding. By fostering better communication among

service providers and supporting data-driven decision-making, we hope this project will

lead to improved outcomes for both the organizations and the people they serve.

Our client, Kevin Daily currently works as an Electrical Engineering Manager at

CNH Industrial in Tucson, Arizona. In addition to this, he is involved in the community. He,

along with Tucson restaurant owner Josh Jacobsen, has volunteered at several nonprofits

that target the homeless population. They have seen firsthand the struggles they

experience, as well as the unfortunate crime that can arise out of this problem. They

noticed that within the industry, there is very little communication between these

organizations. In talks with local government officials, as well as leaders in these nonprofit

organizations, they decided that something had to be done. This project was created as a

result of that need.

4

Kevin Daily created EKA Labs to hold the patent on technology he had already

developed for a previous project. We will be repurposing this concept to allow for ease of

communication between these organizations. Since EKA Labs is a small corporation for

this specific purpose, it doesn’t have a structured workflow. It simply consists of Kevin and

Josh meeting with Pima County officials to determine what they want from the solution.

They relay that information to us as they get it, and we incorporate it into our planning and

design process. The nonprofits have to manually collect and store information, and there

is little to no communication between the different organizations.

Implementation Overview

We propose developing a web application that enables users to host an

organization or take on a role in an existing organization. This system will allow

interactions between users of different roles while providing certain tools assigned to

them by their organization’s leader. These tools include the ability to take on a ‘navigator’

role and interact with people suffering from chronic homelessness or drug addiction and

route them to the proper facilities to receive specialized help from trained professionals.

Additionally, supporting the basic functionality of an organization, and acquiring the

necessary information concerning the community being served will be done to a basic

degree.

Our solution must address several main functional requirements. There will be an

initial login/signup page where a user can create/access their account. The login page will

handle log-in and logout auditing to validate their identity. The user interface will have

several different tabs, from which the user can access and manage their profile, messages,

and roles. A WorldByMe administrator or a specific organization administrator can add

more roles.

Our system will collect different types of information on individuals to store a

person’s history. This information will be available on a single database that will compile all

data organizations choose to share. The database will be updated in real-time to ensure

accurate information is shared. The database will also store messages from the chat

system for up to 30 days, or 11 megabytes. Users can use the chat system to communicate

with one another or contact people by phone through the site. Several nonfunctional

requirements include enforced password requirements, scalability, personal information

security, cross-platform compatibility, and product usability.

For our project, we are utilizing the following common design patterns:

5

●​ Factory Method
○​ Utilizing the factory design pattern would be efficient when defining

objects based on conditions.

○​ Ex: defining role permissions, or functionalities of the different

services.

○​ Currently, our user authentication and role-based access control

methods follow the factory design pattern since role objects are a

key part of the project.

●​ Template Method
○​ Having the template design pattern when defining the overall

structure of each component could be a good approach.

○​ Ex: the process of messaging, account creation, or audit trailing all

are the same general process but require different information for

each task.

○​ Overall, our process of user registration and role assignment

demonstrates template logic.

Technologies Being Relied On and Contributions:
PostgreSQL: A SQL-based relational database for storing/managing data

●​ Need a structured approach to store data about roles, organizations, and the

people in need

Django: Developer-friendly backend framework for business logic, role-based access,

authentication

●​ This will allow us to connect database, infrastructure, and frontend services to the

user

Apache: Handles requests and applications efficiently

●​ To be used in tandem with Django to more efficiently route traffic and potentially

attach other HTTP-based services

React: Frontend library for making responsive user interface

●​ Allows for the modular design of the user interface

●​ Easy to make additions to a dynamic web page

Python: Application logic

●​ Easy to maintain and highly readable language

●​ Good choice for cloud-based services where programming language performance

is not a requirement

AWS EC2: Hosting application for scalability and performance

●​ A scalable and extendable compute service hosted by AWS

●​ Features can be easily extended by connecting other existing AWS services

6

AWS RDS: Hosting database for reliability and backups

●​ We will use a managed AWS database hosting service to abstract the challenges of

self-hosting infrastructure for a database

●​ Native auditing and monitoring services that will be utilized throughout the project

Leaflet: Mapping library for visualizing community data

●​ Allows for an easy-to-use, engaging mapping interface that will be used to connect

with people in need

●​ Chosen because it is a JS library that is easy to integrate within a react ecosystem

Twilio: Messaging API

●​ The main driver for the messaging feature, our service will communicate with this

API to connect individuals

●​ The API has a free tier and an intuitive interface

To ensure that the functionalities of the roles can be executed effectively, our web

application must offer a secure, easy-to-use platform that allows for efficient

communication between and within organizations. Achieving this will include developing

the following features:

User interface
​ Our user interface will showcase a modular tab-based design using React,

preserving the cross-platform ability. With the messaging system at the forefront of the

web application, any updates will be displayed almost in real-time. On the right-hand side,

tabs for the profile, navigation, messaging, and role management will be present. The

left-hand side will utilize functionalities for messaging, such as deleting messages, sending

messages, and drafting messages allowing for seamless communication.

Role-Based Access Control
​ Each role will be defined in a table in the PostgreSQL database with a

personal role being the first official role a user could have. Over time, a user can apply for

multiple roles, which would be approved by the WorldByMe admin. Within the

PostgreSQL database’s permissions abilities, specific roles will be able to see certain “blog

posts” and information.

 Login/Logout Auditing
​ The audit trail system will act as an extra layer of user authentication, in

which users have to register with a valid email and password that complies with security

requirements. With an email verified, the account creation is complete and all future

successful and failed login attempts are logged by Django signals, while logouts will trigger

a session clear out. Additionally, database modifications are logged by the built-in

7

PostgreSQL triggers and all audits are stored in a table that will also be stored in Amazon

Web Services (AWS) CloudWatch for enhanced monitoring.

 Secure Messaging System
​ Twilio will be the main service for messaging and each user will be able to

message other users based on their roles. Attachments will be limited to 4 megabytes with

11 megabytes of storage for messages. Every message over the age of 30 days will be

deleted using the AWS storage capabilities.

Data Object/Input Forms
​ ​ Utilizing HTML/CSS and React, there will be text input portions of the

‘navigator’ data collection form. Additionally, emails, item searching, and file uploads up to

4 megabytes will be implemented by AWS services and Twilio. Each input form will have

input validation to comply with security requirements and will eventually store data that

is approved by the Institutional Review Board, a committee that reviews research

involving people and ensures that the welfare and rights of the people in need are

protected.

Architectural Overview

The diagram below illustrates our system’s architecture, which is based on the

layered architecture pattern. Layered architecture is known for its clear structure and

modularity, which makes it a good choice for systems that require scalability like ours.

However, we found that a strict layered architecture didn’t offer enough flexibility for our

specific use case. Strict layered architecture requires that communications pass through

multiple layers, which can become cumbersome when trying to connect certain

components. To overcome this, we opted for a variation of the pattern known as the

relaxed layered architecture. This design is more adaptable, allowing us to connect

components more directly. This ensures a simpler and more efficient flow of information.

8

Figure 1: Diagram presenting the architecture of the project

User Interface

​ ​ The user interface is responsible for facilitating user interaction. It should be

easily accessible from desktop, tablet, and mobile devices. Pages should not take

excessively long to load. The UI will feature several different tabs to organize the

information in a cohesive and intuitive way. The first main page will be a login/sign-up

page, from which users can access their accounts. Once logged in, the profile tab will allow

users to view their account information as well as which roles they have. There will be a

navigation tab for inputting location information. There will also be a messages tab from

which the user can create chats, view previous chat history, and delete chats. The system

will have a modular design with the specified tabs to the right of the main messaging

system. This will allow the user to locate the necessary information from the main

9

messaging page. Our frontend is written using HTML, CSS, and Javascript. These elements

are connected to a main server.js file.

Login/logout auditing
​ ​ Our system includes a login/logout auditing function, which maintains a

record of changes to the database, storing information such as: who made the change,

what is their role, when they made the change, and how they made the change. It will use

Django signals to alert the system when these changes have been made and store that

information.

Messaging
​ ​ The messaging system is responsible for providing a method of

communication between different users. This involves several elements, including the

ability to send email and sms messages. The main component, however, is a built-in

messaging system that can be accessed from the site. The system will rely on websockets

in conjunction with Django Channels to ensure messages are sent, received, and displayed

in real-time. Message history will be stored in the database.

Navigation
​ ​ We will utilize Leaflet for location-sharing services, allowing navigators to

mark the last known location of people they come in contact with. This will be embedded

into our website using Javascript, and location information that users store will be saved

in our database.

Database
​ ​ The database is a key part of the system and is responsible for storing all

information related to the project. This includes but is not limited to: user and user

information, roles, data objects associated with certain users, and message history. We are

using PostgreSQL for our database which will be hosted on an RDS server through AWS. It

can be accessed by different components of the system through the utilization of Python

scripts.

10

Module and Interface Descriptions

User Interface
​ The front end of our web application is responsible for rendering the user

interface, handling user interactions, and facilitating the connections by utilizing HTTP
requests. While being built by HTML, CSS, and JavaScript, the management of the UI
components, HTTP requests, and the state is done by the JavaScript library, React. The
user interface additionally facilitates the sending and receiving of data that is retrieved by
React’s connection to Django’s REST Framework (DRF). As the data is flowing through the
application, Django’s channels and WebSockets provide real-time messaging, ensuring
that communication can be done without constant page refreshes. The navigation system
will be interconnected with the UI using Leaflet.js which will provide a way to record
proper geolocational data with ease. Communication with the database will happen
directly when retrieving and storing data when utilizing the messaging and navigation
systems.

Figure 2. Showing how the UI connects to the rest of the system

The Django architecture that makes up the systems architecture can be split into

various major components. First and foremost are the models, which handle database
interactions. Next are the Django views which allow us to process requests and responses
from the user via the UI. The URLs and middleware can handle both routes to specific
pages and authentication requests. The middleware can also be used for security
purposes, such as hashing passwords. Django handles all the backend logic, while React
manages the frontend user interface. The connection comes from the Django REST
framework which uses an API to communicate between the two.

11

Database
​ The database is set up using AWS Relational Database Services to host

PostgreSQL, which Django can connect to remotely. This allows Django to use the views
instance to connect the RDS instance seamlessly. As mentioned before, Django can create
middleware that hashes and secures passwords which can connect to the database
directly for the security of the users. Each middleware module is responsible for
performing a different security function for the software’s backend. For instance, all string
based queries and items stored in the database are screened to prevent intrusions like
SQL injection attacks. The middleware functions are able to take requests and return
specific responses, just as the view module Django uses.

Figures 3-4. Showing how the database connects to the system through models

Django manages database changes using migrations and Object-Relational

mapping. When defining models using Django, migrations are specifically used to
propagate changes made to the database/models. After the RDS instance is connected to
the specific backend file, a migration is run to the tables in the RDS instance. Models are
then created for each needed value, like companies, users, and roles, depending on the
specific value needed to be integrated into the database.

The database will have numerous tables for storing different types of information,
including, but not limited to: role definitions, user information, user roles, passwords
(hashed), different companies, message history, and chats, as shown in figure 5 below.

12

Figure 5.Showing the design of the database

Messaging

​ ​ Messaging can be broken down into 3 major parts. The first is the main

messaging system. This will be used to send messages directly to and from users through

our site. It will use a combination of Django Channels and websockets to accomplish this.

The UI Javascript files will subscribe to the necessary websockets and will be notified

when there is a new message to display, as well as communicate the sending of a message.

Django Channels routes the message request to a consumer, which is a special kind of

Django view that handles WebSocket events. Django Channels uses Redis to handle

real-time communication. Redis keeps track of active WebSocket connections and

ensures that messages are properly distributed to the correct chat rooms. The frontend

updates the chat log instantly without needing to refresh the page.

Figure 6. Showing how the messaging system connects to the frontend and database

13

​ Figure 7. Showing how the Twilio API fits into the system

The next major part of messaging is the option to send SMS messages. For this

implementation, we are utilizing Twilio, a paid API, to handle the message sending for us.

Possible use cases for this include password recovery and account verification. This will

also be used to notify users of available housing and resources. This will be integrated into

our already existing Django framework, creating a utility function, and using React to

trigger SMS messages from the frontend.

Figure 8. Showing email setup

​ The third and final element of messaging is the option to send emails. This has a

similar use as above. To handle sending emails, we will use the AWS email system, known

as Amazon Simple Email Service (SES). We will open a Virtual Private Cloud (VPC)

endpoint through which any emails can be sent.

​ Navigation
​ ​ The navigation system utilizes the Leaflet JavaScript library to create our

interactive mapping interface, focusing on locational-based tracking. It provides the user

the ability to put in latitude and longitude coordinates and displays a marker on the map.

This system was designed so that the users can visually understand the general

whereabouts of individuals in need and which services would be of most help, given the

location of the person. The key functionalities of the navigation interface include:

●​ InputFormHandler: The getInputData() method prompts an individual for general

information, such as name, a description of the services they need, and the coordinates of

the location.

●​ Map display: The map is centered on the city of Tucson and allows users to zoom in and out

of the map as they please. The OpenStreetMap tiles, a geodata API’s grid system, are

responsible for dynamically updating the map background within Leaflet as the city

changes.

14

●​ AddMarker: After putting in the manual location and clicking on the ‘Add Marker’ button,

the AddMarker class triggers the AddLocation() method. Utilizing the Nominatim

geolocation API, the coordinates’ geocode is processed into a readable address in Tucson,

such as the nearest QuikTrip or Bashas’. A marker is then placed on the map and the

PopUpHandler class attaches a pop-up using the bindPopUp() method, displaying

relevant information and the coordinates that were given.

●​ ClearForm: Right beside the ‘Add Marker’ button is a ‘Clear Marker’ button which triggers

the clearMarkers() function in the ClearForm class. The clearMarkers() function

allows a user to remove all markers from the map.

Figure 9. Navigational System Overview​ ​ ​

As seen in Figure 9, the InputFormHandler is mainly responsible for gathering the

responses from the form on the interface. However, it also serves as the source of data for new

markers. The key steps of the workflow are included below:

●​ InputFormHandler gathers user responses from the form and feeds the data into

the AddMarker function.

●​ Moving on to the AddMarker class, creating a new marker based on the latitude

and longitude from the InputFormHandler. Figure 9 highlights how AddMarker

directly relies on the InputFormHandler and calls the PopUpHandler.
●​ PopUpHandler finishes the marker creation process, binding the additional

information to the marker made in AddMarker.

15

●​ Finally, when a user is done, they’re able to clear out all the previous markers using

the ClearForm class. The clearing component directly relies on the public Markers

array to identify and remove markers but also implicitly relies on the
PopUpHandler to be able to remove all the pop-ups as well.

16

Implementation Plan

When defining the implementation plan, it was evident that each component

needed to be done at a specific pace and worked on in pairs at the very least. Along the

way, we intend to approach certain implementation challenges with a more spaced-out

timeline to ensure that more help can received in time, collaboration with each other, and

in-depth research methods. Considering past work done together, we find it easier to have

team members who specialize in certain areas, which are defined by the different color

bars below in Figure 10. Each elongated bar represents each component we are to focus

on with each of the implementation steps displayed below them. Testing and validation

will be done with limited cycles after each iteration of components is completed but will

be fully tested throughout the testing and validation phase. With this implementation plan

in place, we aim to complete a robust, scalable role-based access system that will provide

services to the Tucson community, extending to state and national levels.’

17

​ Figure 10: Implementation Plan Gantt Chart

When the state of the overall architecture was revisited, we found that hosting the

database on the same instance as the server would reduce the project’s scalability.

Additionally, it would create various issues when implementing the login/logout auditing,

SMS/email messaging, and even the current data objects and forms. The constant manual

implementation of each component would reduce the quality of the architecture and the

effectiveness of the maintenance it requires. Overlooking the integration of all the

components is an essential part of making the final product possible.

Login/Logout Auditing

 When setting up our audit trail system, we first had to utilize a more efficient AWS

architecture when it came to hosting our application and database. Therefore, our hosting

service remains with an AWS EC2 instance and the database resides inside our AWS RDS

instance. From there, built-in PostgreSQL event triggers were implemented to record any

changes to the database, and Django login signals were developed to track login/logout

activities. One remaining part of the login/logout auditing system that is left is connecting

the Django signals with the database’s audit table. Lastly, CloudWatch, a AWS monitoring

service was initialized during the modification of the AWS RDS settings so that the

PostgreSQL logs were connected to the CloudWatch logs.

SMS/Email Messaging

​ Implementing SMS messaging has not been a hard task, as most of the functionality

is being paid for through Twilio, a third-party service. We have been working together

with the client on setting up the Twilio account but the full implementation won’t be

completed until we have more development on the frontend and backend aspect. As for

the email feature, the most plausible option would be to utilize Twilio Email API and for a

backup plan, the AWS SES (AWS Email) could work.

​

Data Objects and Forms

 Developing more specific data objects relies more on the structure of the database

and role-based access. As more of the architecture of our project develops, we will be able

to implement more enhanced features such as file uploads and item searching. However,

we have not made much progress on this yet and our plan for implementation is very

general. In the coming weeks, we should have a more concrete idea of how to accomplish

18

this part. When it comes to the forms, HTML/CSS with React to make the forms more

engaging. Input validation will be utilized to ensure consistent and valid data is typed in.

Testing and Validation

Throughout the final stretches of each phase of development, the testing and

validation of each component will be a continuous and iterative process. Each component

will have at least 2 different kinds of validation to ensure that each workflow is working

properly. The main kinds of testing and validation include unit testing, integration testing,

database testing, and front-end UI testing. Utilizing manual and automated testing, our

approach will make sure that bugs/issues are caught early, components are integrated

smoothly, and our project remains effective and reliable.

Conclusion
In summary, there is an epidemic in Tucson, Arizona with homelessness, people

suffering from severe mental illness, and chronic drug addiction. There are many different

organizations in the area with goals to remedy these issues, but they all operate

separately, with little to no communication between them, which bogs down the process

of helping these individuals. This problem is not limited to Tucson, however

HelloWorldByMe is planning on addressing the issue in Tucson first and being expanded

to help communities globally in the future. HelloWorldByMe will allow organizations to

join the platform with ease, once added to our database they will then, through leaflet,

have access to a multitude of other organizations in their surrounding area. Using Django

Channels, users will be able to communicate with other users in their organization or

reach out to others who may not be in their organization and would not be able to reach

otherwise. Our database will store contact information as well as permissions for each

user so if a user is permitted to be communicating with another, they are able to in several

different ways such as email, sms messaging, or HelloWorldByMe’s native messaging

system. We already have a working prototype of all the major components discussed,

going forward we need to connect all the pieces together and get feedback from our client

after some field testing. Once our client has what he is looking for, HelloWorldByMe can

be used by employees, organization leaders, and numerous other entities to better

communicate with each other and be able to provide the proper care to their community

much faster and more effectively than how they are now.

	
	Introduction
	Implementation Overview
	Architectural Overview
	Module and Interface Descriptions
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Implementation Plan
	Conclusion

