RECON

Software Design Document (Version 2)
9/24/2025
Team Name: Cyber Recon
Sponsor: HighViz Security LLC
Team Mentor: Karthik Srivathsan Sekar

Team Members: Zachary Garza, Sean Weston, Jared Kagie, Christian Butler

Table of Contents

INErOAUCTION c.cueeeieeeeiiiiiitiiintecintecstticieeesssteesstecsseesssseessstessssnsssssessssssssssesssssasssssessssssssssnssssanssss 1
Implementation OVEIVIEW....uecieceenieenstensenssnenssecssnnsssesssecsssnsssesssassssesssssssassssesssssssassssasssssssassss 2
ATChItECtUral QVEIVIEW ..ucciueiiiuiiiieensinsseensenssnnnssensessssecssessssesssessssssssssssassssesssssssassssesssssssassssasssses 3
Module and Interface DeSCriPtiOnsccccveicciccsnnicsssssrrcsssssssesssssssessses 5
Data Processing Pipeline MOAUIEcccuiiiiiiiiiiecie ettt ve e e e e eaae e sveesabaeenseeens 5
AT/ML ENGINEviiiiiieciie ettt ettt ettt et e et e estteesebeessbeeessseesssesssseeassseesssaesssesassssesseenssesasseeesssaenns 6
Threat Intelligence INTEZIatiON.ccverierierieiieeie ettt ettt e e sieesteestaesteesenessnesssesssesssesssesssesnsennns 8
CommAaNd-Line TOOLSc..eiiuiiiiiiiiie ettt sttt ettt ettt et e et e e bt e be e be e bt enbeesbeens 10
Implementation PIANcoeiiiiniininiininiiininicssninssnncsssicsssnsssssnessssncssssssssssssssssssssssssssssssssssssssses 12
Phase 1: Environment and Foundations (WK 4)c.ooovuiiiiiiioieiiieeeceee et e 12
Phase 2: Other Module Development (WEEK 5 = 7) c..oiiiiiiiiieeiiecie ettt e 12
Phase 3: Integration and System Finalization (Week 8 - 9)ccoiriiiininiiiiieeeeeeeeee 12
Phase 4: Final Testing, Polish, and Documentation (Week 1074)ccccevvievieniirniienienieeieeieereeee e 12
CONCIUSION .uuuennirineiniinninneniiinniistessseessessssesssesssnssssesssessssssssessssssssssssassssesssssssassssssssasssassssasssnse 13

APPENAIX: FIGUIES..cccoiveriiniirriiisissnnicsssssriessssssresssass 14

Introduction

Statistics have shown that 60% of small businesses shut down within six months following a
cyberattack. In the US alone, the average cost of a data breach is currently $9.44 million. Many
companies lack in-house capabilities to scan and prioritize vulnerabilities since they are
understaffed and underfunded. This deficiency has made the majority of companies over-reliant
on third-party cybersecurity professionals like HighViz Security LLC.

HighViz possesses the skills to discover and document vulnerabilities with automatic scanners like
Nessus. Although these scans detect a wide array of issues, they also produce false positives, they
give irrelevant information, and there is just too much information that manual evaluation becomes
highly inefficient and time-consuming. Cyber Recon has a solution that utilizes artificial
intelligence in automating vulnerability scanning and prioritization.

In the dynamically changing threat landscape of today, the imperative to refresh cybersecurity
tactics is clearer than ever. As technology has been evolving at a high speed, cyberattacks have
become more sophisticated and unpredictable, exploiting even the smallest vulnerabilities and
placing organizations at significant financial and reputational risk. Using artificial intelligence and
deep analytics, the proposed solution will translate raw vulnerability information into actionable
guidance for faster decision-making and enhanced risk mitigation. This preemptive approach not
only enhances the overall security position but also ensures that resources are directed at the most
critical issues first.

The incorporation of machine learning and natural language processing in the assessment process
is a paradigm shift for vulnerability management. By scanning complex Nessus files, enriching
results with up-to-date threat intelligence, and prioritizing risks intelligently, the system enables
security teams to work with greater accuracy and efficiency. Its hybrid architecture, designed for
local deployment on MacBook Pro M2 hardware and supported with secure cloud collaboration,
balances between both cutting-edge technology and practical usability. This approach ensures
scalability for organizations of all sizes while maintaining strong guarantees of data privacy.

This design document outlines the architecture of the proposed Al-enabled tool. The solution
inputs Nessus files, applies machine learning and natural language processing to analyze
vulnerabilities, incorporates external threat feeds, and produces a prioritized list of risks
accompanied by a concise report that communicates findings in a way that is accessible to non-
technical stakeholders. The focus is on delivering a deployment model that empowers HighViz
team members to operate locally while collaborating securely through the cloud. With this
foundation in place, the sections that follow define the specific challenges HighViz Security faces
and the architecture proposed to address them.

Implementation Overview

Cyber Recon is an artificial intelligence-powered vulnerability analysis and reporting solution that
automates the lengthy process of parsing, prioritizing, and presenting vulnerability information.
The vision behind the solution is to take raw scan data from scanners such as Nessus and turn it
into an actionable, intelligent enhanced report that drives security assessments at higher speeds
with less human error. The goal is not to just be more effective, but also to enhance accuracy and
prioritization by taking advantage of Al, anomaly detection, and external threat intelligence feeds.

At an architecture level, the implementation makes use of a modular producer-consumer type
pipeline. The data is fed in via the input layer, where raw .nessus XML files, CSVs or JSON scan
results are processed by a custom NessusParser component. This parser is accompanied by retro
hv-doctools libraries provided by HighViz to process scan formats reliably, converting them into
structured CSVs and SQLite databases that form the basis for analysis. The data is then piped down
to the VulnerabilityProcessor once structured. This is the systems communicator of contact
between the machine learning models external API’s and report tools.

The intelligence layer is fueled by the AI/ML engine, whose Random Forest classifier that is
backed by TF-IDF text vectorization is used to determine the risk levels of vulnerabilities beyond
CVSS scores. Aiding it is an Isolation Forest anomaly detector that finds patterns and outliers that
may not be caught by normal scoring mechanisms. Both the in-house models are trained locally to
protect data privacy and produce their outputs blended into a composite threat score integrating
Al-based prediction with conventional factors and real time risk probability. Integration with threat
intelligence adds an additional layer of benefit. Cyber Recon uses real-time lookups against the
CISA KEV catalog, Exploit Prediction Scoring System (EPSS) and National Vulnerability
Database (NVD). These additions enable the system to differentiate between vulnerabilities in the
wild and theoretical ones. Results of these services are cached for performance and aggregated
into the risk calculation framework.

The last pipeline stage addresses standardized reporting. We use openpyxl libraries and matplotlib
visualization libraries, and the system generates Excel reports with comprehensive findings,
summary statistics, and charts. CSV and JSON outputs elsewhere allow other platforms to be
integrated with, and interactive dashboards using Plotly in the future.

Cyber Recon is written mainly in Python 3.9+, utilizing Pandas and NumPy for data processing,
scikit-learn for machine learning functionality, and SQLite for simple storage of parsed scans.
Central configuration via a YAML file is used so that teams can quickly adjust model parameters,
API endpoints, and process options without altering code. Security is designed into the system
naturally by running all Al processing on the local machine, i.e., sensitive vulnerability data never
exits the client environment.

Architectural Overview

Cyber Recon uses a modular, pipeline-driven architecture designed to transform raw
vulnerability scan data into actionable security intelligence through the integration of artificial
intelligence and real-time threat intelligence. The system operates as a series of interconnected
processing layers, each responsible for specific data transformation and enrichment while
maintaining data privacy through local processing capabilities. The architectural design of the
system has five distinct layers in which the vulnerability data flows, being Input Processing, Data
Pipeline Management, Threat Intelligence Integration, Al-Integrated Analysis, and Intelligence
Reporting. This approach ensures clear separation of concerns while enabling easy and fast data
flow from raw Nessus output to concise security reports.

= Threat Intelligence Source

NVD CISAKEV EPSS

=] CyberRecon Architecture

= Threat Intelligence Integration

nvd.py kev.py epss.py l

/

Data P /{ I
aabrocess B Al/ML Engine
Nessus Scanner N Nessus Parser I / /
// Vulnerability Classifier]
-~ | Vulnerablllly

—_— |

Processor .—-r—'—’"__"—-‘

User \

Local Database

T Anomaly Detector

Figure 1: Architectural Diagram of Cyber Recon's system

The Input Layer of the system architecture is the files passed from the user in the form of the
Nessus scanner file. The file is taken to the parser inside the Data Processing Pipeline to be turned
into a more efficient CSV file to make data handling easier. The focus of the Data Processing is to
allow for analyzation of the parsed Nessus data and to be the main flow of information throughout
the system. As the model above shows, the Vulnerability Processor is a main source of workflow.
The Al and Threat Intelligence are both called upon by the Vulnerability Processor and are used to
help generate the reports in various formats such as CSV, Excel and JSON. Lastly, the Data

Processing uses an updater that keeps the data consistent for synchronizations between
environments, as well as backing up information.

The Threat Intelligence integration connects the system to multiple sources outside of itself for use
of external threat analysis data. Each of the three sources provide information from the National
Vulnerability Database, Known Exploited Vulnerabilities, and Exploited Prediction Scoring
System. The KEV Client queries CISA's catalog to identify vulnerabilities with confirmed real-
world exploitation, while the EPSS Client retrieves probability scores indicating likelihood of
future exploitation. The NVD Client provides official CVE metadata and CVSS scoring
information. Each client implements caching mechanisms and rate limiting to ensure efficient
operation, with all enriched data flowing back to the Vulnerability Processor for integration with
internal analysis results.

The AI/ML Engine serves as the analytical intelligence core that processes the structured data
received from the Vulnerability Processor. The engine employs two primary analysis components,
a Vulnerability Classifier that uses Random Forest modeling with text analysis to predict risk levels
beyond standard scoring, and an Anomaly Detector that identifies unusual threat patterns through
Isolation Forest algorithms. A Learning System component enables continuous improvement by
collecting feedback and retraining models based on real-world results.

Once all components have finished their evaluations, they report back to the Vulnerability
Processor for the finishing touches. It combines all analytical data into final composite threat
scores. It combines all the Al predictions, threat intelligence indicators, traditional CVSS scores,
and anomaly detection results using weighted algorithms that reflect both theoretical severity and
practical exploitation likelihood. The Vulnerability Processor then will create one of the three
outputs of CSV, Excel or JSON to give back to the user for both ease of understanding as well as
clear visual data presentation.

The system's communication flow is characterized by a producer-consumer pipeline pattern where
the Vulnerability Processor is the primary source of communication. Data moves unidirectionally
from input through parsing, then branches to parallel processing in the Al Engine and Threat
Intelligence modules before reconvening for composite scoring and output generation. This
centralized coordination ensures data consistency while enabling parallel processing for improved
efficiency.

The architecture embodies multiple established patterns working in concert. The layered
architecture provides clear separation between processing stages, while the pipeline and filters
pattern guides data transformation through sequential enrichment phases. The plugin architecture
enables easy addition of new threat intelligence sources. These patterns combine to create a
modular, scalable system that maintains data privacy through local processing while leveraging
external intelligence sources.

Module and Interface Descriptions

Data Processing Pipeline Module

The Data Processing Pipeline Module is the backbone of the entire system. It is responsible for the
ingesting, parsing, and preparing of the data from a provided nessus file. This data will then be
passed onto our AI/ML Engine Module, and finally the pipeline will be used to generate a final
excel report.

Data Processing Pipeline

NessusParser

VulnerabilityProcessor

- config: dict

- hv_tools_path: str

- findings_map: str

- parse_nessus_script: str

- sql_inport_script: str

- extract_sysnames_script: str

+__init__()

+ parse_nessus_file() -> str

+ create_sqlite_database() -> str

+ process_complete_scar() -> dict

+ get_scan_summary() -> dict

+ extract_host_information() -> list{dict]

- _run_hv_script() -> subprocess.CompleteProcess
- _validate_nessus_file() -> bool

- _generate_file_hash() -> str

- config: dict

- nessus_parser: NessusParser

- kev_client: KEVClient

- nvd_client: NVDClient

- epss_client: EPSSClient

- vulnerability_classifier:
VulnerabilityClassifier

- anomaly_detector: AnomalyDetector
- output_path: str

+__init__()

+ process_scan() -> None

+ _load_scan_results() -> DataFrame
+ _enrich_with_threat_intel() ->
DataFrame

+ _apply_ai_analysis() -> DataFrame

+ _calculate_composite_risk() ->
DataFrame

l + _generate_reports() -> None

+ _create_summary_statistics() -> dict

+ _validate_input_data() -> bool

+ _log_processing_metrics() -> None

DataUpdater

- config: dict

- data_dir: Path

- backup_dir: Path
- manifest_file: Path

+__init__()

+ syncronize_updates() -> None

+ _create_backup() -> None

+ _download_updates() -> list{dict]

A 4

+ _apply_updates() -> None hv-doctools
+ _update_manifest() -> None
+ _restore_backup() -> None - parse-nessus.py

+ _verify_update_status() -> dict
- _calculate_file_checksum() -> str
- _validate_update_source() -> bool

- nessus-sql-import.py

- extract-sysnames.sql

Figure 22: UML Diagram of the Data Processing Pipeline module

Starting with NessusParser, this class is designed to take in a nessus file and parse it into a CSV
format to make it easier to use. When initialized, it can be provided a configuration file that
provides various parameters, such as hv_tools path which contains the path to the hv-doctools
directory. Parse nessus_file takes a nessus file as input and returns a path to the CSV file.
Create sqlite database converts a CSV file, generated from parse nessus file, into an SQLite
database to allow for more easily accessed data, as well as returning a path to the database.
Process_complete scan combines the previous methods, turning the nessus file into a CSV, then
into an SQLite database, ultimately returning a dictionary containing a path to the CSV file, SQLite
DB, and scan summary. Lastly, get scan summary extracts the scan’s metadata without processing
the data, returning start and end timestamps, number of scanned hosts, number of vulnerabilities,
and the count by severity level.

VulnerabilityProcessor is used for the vulnerability analysis workflow from the input of the data
to the output. It handles parsing, enriching, and analyzing the data, coordinating the AI/ML engine
and the threat intelligence APIs. It also handles the creation of standardized reports in various
formats, such as Excel, CSV, and JSON. When initializing the class, a configuration file is provided
which includes the directory for the trained Al models, an anomaly detection sensitivity metric, or
the config for the API. Process scan takes the paths to the nessus file and output report, then runs
through the vulnerability processing pipeline. This includes parsing the input file via NessusParser,
loading/validating the data, enriching it with threat intelligence, applying the AI/ML analysis,
calculating the composite risk scores, and then generating the final reports.

DataUpdater ensures that all threat intelligence is synchronized so that all data analysis is accurate
between devices. Additionally, it handles creating and restoring backups of the data to ensure data
is always available. When initialized, a configuration file is provided which contains the directory
for the main data storage, as well as the list of threat intelligence sources. Synchronize updates
executes the data synchronization process, which involves creating a backup of the current data,
downloading and verifying updates, updating the manifest with the new version, and restoring the
backup if a failure occurs.

AI/ML Engine

The AI/ML Engine is the main meat of the system. After the data is parsed properly, the
AI/ML Engine determines the vulnerability risk scores and anomaly detection. This helps
determine what threats should be considered and what threats aren’t a priority. All of this is
completed locally to ensure total security for their client’s data.

VulnerabilityClassifier AnomalyDetector LearningSystem

- model_path: Optional[str]

- pipeline: Pipeline + __init__() + _init__()

-is trained: bool + extract_features() -> ndarry + collect_feedback() -> None
- ' + train() -> None + retrain_models() -> None
- + detect_anomalies() -> ndarry + get_feedback_summary() -> Dict
+__init__() + is_anomaly() -> ndarry + export_training_data() -> DataFrame

+ prepare_features() -> tuple

+ train() -> None

+ predict_risk() -> ndarray

+ analyze_feature_importance() -> dict
+ get_model_metrics() -> dict

+ save_model() -> None

+ load_model() -= None

- _preprocess_text() -> str

- _create_risk_labels() -> Series

- _validate_training_data() -> bool

Figure 33: UML Diagram of the AI/ML Engine Module

When initializing VulnerabilityClassifier, the path to an optional pre-trained model can be
provided. The ML pipeline that will be used by the class will include TfidVectorizer() and
RandomForestClassifier(). Prepare features is used to extract and prepare features from the
provided vulnerability data when inputted with the vulnerability data that was found. After being
used, it returns a feature matrix and the target labels. Predict risk, when provided with
vulnerability data, will create the risk probability scores for each of the vulnerabilities. What is
returned is an array of risk scores for the vulnerabilities provided. Train, save model, and
load model allow for the configuration of the model to be used during the vulnerability risk
analysis, while get mode metrics allows the various aspects of the specified model to be
inspected.

AnomalyDetector’s main responsibility is to identify and report anomalies in the provided data.
Specifically, it is designed to detect rare/novel threats that may have been missed by standard
scoring.extract features returns the numberical features of the data being analyzed. Train will train
the isolation forest model specifically for finding anomalies in the vulnerability data.
Detect_anomalies will return all of the anomaly scores, while is_anomaly will return return a
boolean array of anomaly classification.

LearningSystem allows the model to continuously improve based on real-world feedback. This
feedback will come from employees when new data may need to be introduced to the system, so
that the model can be trained on potentially unseen data. Collect feedback willl store any feedback
given by testers. Retrain_models will retrain the models based on the collected feedback, ensuring
the model has access to the newest information provided. Get feedback summary allows for any
statistics on the feedback submitted to be seen, and export training data allows all feedback to be
collected so that it may be analyzed.

Threat Intelligence Integration

The Threat Intelligence Integration Module is responsible for enriching vulnerability data with up-
to-date external threat intelligence feeds. While the Data Processing Pipeline ensures that raw
scanner outputs are normalized and structured, this module provides the critical context that
transforms those outputs from static lists into real-world diagnosed security intelligence. Its
primary role is to assess whether a vulnerability is actively being exploited, how likely it is to be
weaponized, and whether it has significant impact to the real world.

Within the Cyber Recon architecture, this module acts as a bridge between internally generated
findings and the wider cybersecurity ecosystem. The AI/ML Engine produces estimated risk scores
based on training and statistical analysis, but without external enrichment, these scores could
overlook emerging threats. By integrating authoritative sources like the CISA Known Exploited
Vulnerabilities (KEV) catalog, the Exploit Prediction Scoring System (EPSS), and the National
Vulnerability Database (NVD), the Threat Intelligence Module adds dynamic and evidence-based
context to each vulnerability record.

The importance of this module is obvious; it ensures that the system does not merely prioritize
based on “theoretical” severity, like the CVSS scores, but also incorporates live exploitation data.
For example, a medium-severity vulnerability might be assigned high urgency if KEV lists it as
actively exploited, while a critical vulnerability without known exploits may be downgraded in
priority. In this way, the module ensures security teams are allocating their resources to the issues
that matter most right now.

Additionally, the module supports caching and rate-limiting functionality. Since external lookups
can be slow or limited by API restrictions, results are cached locally in structured formats for quick
reuse. This live querying makes the module reliable, even when handling large vulnerability
datasets.

Threat Intelligence

KEVClient EPSSClient

+ config + config
+base_url +base_url
+ timeout + timeout
+ retries + retries

+ backoff_factor + backoff_factor

+ get_known_exploited_vulnerabilities(): Dict + get_exploit_probabilies(): Dict

+ get_kev_data(List): Dict + get_epss_scores(List): Dict

- make_request(): requests.Response - make_request(): requests.Response

NVDClient

+ config
+base_url
+ timeout
+ retries

+ backoff_factor

+get_cve_data(List): Dict
- get_cve_data(str): Dict

Figure 44: UML Diagram of the Threat Intelligence

- get_cvss_score(Dict): float
- make_request(): requests.Response module

The Threat Intelligence Integration Module contains three classes, KEVClient, EPSSClient, and
NVDClient that each provide focused API for its respective threat intelligence source. Together,
they form the enrichment backbone of our solution, offering standardized methods for querying
vulnerabilities, retrieving enrichment data, and caching results for performance.

KEVClient (kev.py)
Responsibilities: Interfaces with the CISA KEV catalog to identify vulnerabilities with confirmed
exploitation. Provides details such as exploitation timelines and remediation deadlines.

Implements local caching and retry logic to minimize API overhead.

Key Public Methods:
e init (config: Optional[Dict] = None), Initializes the client with API and caching
configuration.

e get known exploited vulnerabilities() -> pd.DataFrame, Retrieves the full KEV catalog
and returns it as a Pandas DataFrame for downstream use.
o get kev data(cves: List[str]) -> Dict[str, bool], Accepts a list of CVE IDs and returns a
dictionary mapping each CVE to a Boolean indicating whether it is listed in KEV.
EPSSClient (epss.py)
Responsibilities: Connects to the Exploit Prediction Scoring System (EPSS) to obtain exploitation
probability scores and percentile rankings for CVEs. Designed to efficiently handle large CSV
downloads and update scoring with the latest daily threat intelligence.

Key Public Methods:
e init (config: Optional[Dict] = None), Initializes the client with API and caching config
options.

e get exploit probabilities(cves: List[str]) -> Dict[str, float], Returns a dictionary mapping
CVEs to their probability of exploitation (0—1 scale).
e get epss_scores(cves: List[str]) -> Dict[str, Dict], Provides a richer result set, including
both probability and percentile ranking for each CVE.
e download epss_data() -> pd.DataFrame, Downloads and parses daily EPSS dataset, stored
as a Pandas DataFrame for reuse.
NVDClient (nvd.py)
Responsibilities: Interfaces with the National Vulnerability Database (NVD) to retrieve official
CVE metadata, CVSS scores, and impact classifications. Provides support for CVSS (v3.1, v3.0,
v2.0) and includes rate-limiting logic to comply with NVD API usage.
Key Public Methods:
e init (config: Optional[Dict] = None), Initializes client with API credentials, rate-
limiting policies, and caching options.
e get cve data(cves: List[str]) -> Dict[str, Dict], Accepts a list of CVEs and returns a
dictionary mapping each CVE to its associated metadata and CVSS scores.

e get cvss score(cve item: Dict) -> float, Extracts and returns the CVSS score from an NVD
API response object.

Command-Line Tools

The Command-Line Tools and Utilities Module is the primary user-facing module of the Cyber
Recon system. While the data processing, AI/ML Engine, and Threat Intelligence Integration
modules provide the core functionality, the command-line tools serve as the orchestrators that
expose that functionality in a consumable way. The tools allow security analysts and developers
to interact with the system in a consistent, scriptable and replicable way. By exposing a uniform
interface, the tools are straightforward to integrate into existing workflows, automated pipelines,
or test setups.

This module provides three specific command-line tools. The first is process nessus_scan.py,
which runs the complete end-to-end vulnerability analysis workflow. This includes parsing raw
nessus XML scan data, checking its integrity, enriching it with threat intelligence feeds (KEV,
EPSS, NVD), applying Al-based classification and anomaly detection, calculating composite risk
scores, and generating reports in several formats such as Excel, CSV, and JSON. This script is the
largest of the three tools, constructed for full production use.

The second utility is parse_nessus.py, which is a lightweight parser for situations where a complete
analysis is not required. It performs XML-to-CSV and SQLite conversions so that users can readily
obtain structured Nessus scan results. The tool is useful for preprocessing data or for analysts to
feed outputs to other security tools without the full workflow.

The third use case is main.py, the primary entry point of the system. It provides three execution
modes: process, which runs the full pipeline with Al and threat enrichment; update, which
synchronizes local data with the latest threat intelligence feeds; and classify, which applies the Al
classifier to pre-parsed datasets without performing parsing or enrichment. By integrating these
options, main.py reduces user interaction, eliminates redundancies and allows consistent
configuration management across workflows.

Figure 5: UML Diagram of the Command Line module

10

The command-line tools module offers a consistent interface on three modes of execution: process,
update, and classify. These are invoked by the main program and share a common argument list: -
-config (YAML file), --input (source file such as a .nessus scan or pre-processed CSV), --output
(result directory or file), and --debug (verbose logging). This uniform design ensures users can
include Cyber Recon in scripts, automation pipelines, or manual workflows with minimal
modifications.

In process mode, the software executes the full pipeline: it ingests raw .nessus XML, checks the
data for consistency, enriches results with KEV/EPSS/NVD knowledge, applies Al-driven
classification and anomaly detection, computes a composite risk score, and generates reports in
Excel, CSV, and JSON formats. The update mode focuses on maintaining up-to-date threat
intelligence, using the DataUpdater with checksum and backup verification to ensure data integrity
even if a source fails. Meanwhile, classify mode streamlines experimentation by applying Al
models directly to pre-parsed datasets, allowing fast re-scoring or model evaluation without re-
running the entire pipeline.

Collectively, these services articulate the module's public promise: to allow users to process scans
from beginning to end, keep their intelligence feeds current, or quickly apply Al-based risk scoring.
By using explicit arguments, deterministic results, and built-in checks, the interface allows analysts
to confidently rely on Cyber Recon for production pipelines and research probes.

11

Implementation Plan

The implementation timeline extends across the semester; however, for clarity and because this
document was written towards mid-semester, it is presented beginning at Week 4.

Phase 1: Environment and Foundations (Week 4)
We will first begin by creating the environment for our software solution. Concurrently, the Data
Processing Pipeline and Artificial Intelligence/Machine Learning Engine will begin to be

constructed. Since these three are the main backbones of our solution, these sections will benefit
from being created first.

Phase 2: Other Module Development (Week S - 7)
After the main backbone is constructed for our software solution, other modules are to be
developed on top of this. The Public Interface module needs to have the Data Processing module

finished before development, explaining its placement on the Gantt Chart (fig 3). This is also why
the Threat Intelligence module is being developed after the Data Processing module as well. While
the testing and development of these are going on, the implementation and testing of the Artificial
Intelligence/Machine Learning Engine is still taking place.

Phase 3: Integration and System Finalization (Week 8 - 9)
Due to all the individual modules being developed, final integration methods can now be assigned

to the team members to create a cohesive product. The software solution requires lots of testing,
since all these parts need to coexist and work together in tandem. Implementation will occur at the
same time as the final testing of the command-line tools, as they will be finished around the same
time.

Phase 4: Final Testing, Polish, and Documentation (Week 10+)
Our software solution needs to be done by Week 9, per class instructions and guidelines. Thus, this

allows further final polish for the client as well as final presentations and user manual creation.
This leaves system testing to be finished around Week 10, and final polish lasting throughout the
rest of the semester. By Week 15, the codebase will be finished and ready to deploy.

ation Plan Gantt Chart

September October November/December
18Sep 20Sep 21Sep 27Sep 28-Sep| 4-Oct 5-Oct 110t 12-Oct 18:0ct 190ct 25-0ct 26-Oct] &Now. 2Now B-Now ONov 7-Dec
a 5 7 8] 10 1 12-16

Figure 66: Gantt Chart showing
reegrton Cyber Recon's Implementation
F—— Plan

12

For this project, the work is distributed among the team as follows: Zach will write the initial
environment setup and the integration of the command-line tools, Christian will write the data
processing implementation and will also be responsible for system integration, Sean will write the
AI/ML engine implementation, and Jared will write the threat intelligence and be responsible for
the final polish and documentation. All test phases, from data processing, AI/ML engine, threat
intelligence, command-line tools, up to full system testing, will be a shared responsibility across
the entire team to ensure thorough coverage and overall quality assurance.

Conclusion

Overall, the main objective of this document is to illustrate the impacts, purposes, and planning
decisions in developing our software solution. By stepping through the architectural overview, the
module descriptions, and the staged implementation plan, we have shown how Cyber Recon is
designed to transform raw vulnerability data into actionable intelligence for HighViz Security LLC
and their clients. Each design decision was made with both practical and strategic considerations
in mind. This helps balance local execution, secure collaboration, and the integration of machine
learning and natural language processing.

The architectural structure emphasizes clarity and modularity, ensuring that each component works
both independently and as part of a larger, cohesive whole. This modularity not only simplifies
testing and debugging but also allows team members to contribute in an efficient and meaningful
manner without sacrificing quality. The implementation plan further demonstrates how these
modules will come together over the next weeks, highlighting the approach of building the
backbone, developing features, and performing final integration.

From a broader perspective, the importance of this project extends beyond its technical details.
Cyber Recon directly addresses a growing need in the cybersecurity field. By automating tedious
manual processes and enhancing them with contextual threat intelligence, our solution allows
HighViz Security to help clients better secure their domains, while enabling HighViz to more
efficiently assess their clients.

In short, the combination of robust architecture, careful planning, and team collaboration makes
our solution an asset for improving vulnerability identification and management. As we move into
the implementation and testing phases, we are confident that the project will not only meet its
immediate goals but will also provide lasting value to HighViz and their clients. With this design
as our foundation, we are optimistic about the project’s contribution towards Al-driven solutions
for cybersecurity management.

13

Appendix: Figures

Figure 1: Architectural Diagram of Cyber Recon's SYStemcccceeveuiiieiieiiiieniieeciie e 3
Figure 2: UML Diagram of the Data Processing Pipeline module...........ccooveviieniiiiniininienennee. 5
Figure 3: UML Diagram of the AI/ML Engine Moduleccccoeiiiniiiiiiiniiiiiiieceeeieeee e 6
Figure 4: UML Diagram of the Threat Intelligence module............c.ccccoveieiiiiniiieniiinie e, 8
Figure 5: UML Diagram of the Command Line module.............ccccoooiiiiiiiiiniiniiiiieieeeee 10
Figure 6: Gantt Chart showing Cyber Recon's Implementation Plan.............ccccoeevvveieininnnnneen. 12

14

