
Software Testing Plan

4/5/2024
Team IQ

Project Sponsor: Erika Konrad

Faculty Mentor: Igor Steinmacher

Version: 1.1

Team Members:
Logan Samstag (Team Lead)

Nicholas Persley

Kristiana Kirk

Elian Zamora-Rivera

Robin Pace



Table of Contents
Introduction 3
Unit Testing 4
Integration Testing 5
Usability Testing 6
Conclusion 9



Introduction

The project that our team has been working on is a product known as RedPen, which is

a web based application that allows for aspiring journalists on NAU’s campus to take

quizzes that test their knowledge about concepts covered in their journalism courses.

Our primary goal is to assist our client in making sure that her students understand the

concepts that are being covered in the course, as the current testing materials that she

is using have many problems, one of which being that the content that is covered in the

assessments do not fully represent what is being taught in the class.

Before we discuss our plan for testing, it is important to cover what testing is. Software

testing is the act of testing the product that you are developing in a number of ways.

This could be testing individual functions, how the functions work together, or how

certain pieces of the end product work from the user point of view. This is important as

it allows for certain edge cases to be detected and allows for these edge cases to be

addressed during development. Overall, the way that Software Testing works is by

identifying certain cases that could be a problem, and then using some sort of

framework or library in order to test if that case is a problem. For example, if you

anticipate that a function is not going to work with a certain input, you write a test that

tests that input against the output that you expect.

Our plan for testing our product is to have each team member test a different portion of

the code than what they developed initially throughout the project. For example,

someone who worked on the quiz display for the student will instead test something on

the professor side of RedPen. In terms of the amount of testing that we will end up

doing for RedPen, we plan on testing around 50% of our functions on the backend side

of things, as well as using libraries to test integration and usability. We decided to do



50% testing of our functions as not all of them have an easy way that we have found to

test them. For example, our function that renders the string for the user to click on does

not have a very good way to unit test it. Thus, we will unit test the pieces around it to

make sure that the function works, and we believe that testing 50% of functions is

enough to make sure all of the functions of RedPen are working. Additionally, we will

focus less on testing integration and usability wise as with our system design the

modules should fit together nicely, and thus they require less testing to make sure they

are functional. Thus, in the following sections, we will discuss more in detail our Unit

Testing, Integration Testing, and Usability Testing.

Unit Testing

Background

Before discussing how unit tests will work for RedPen, we must first introduce

what the idea is, which is in essence testing individual functions/methods/procedures

(units) in which the program is made up of, all to make sure they function correctly

under typical and, less common, atypical conditions, overall confirming that the program

at the lowest level works.

Details

For unit testing, the two frameworks that have been chosen are Jest and

PHPUnit, where Jest is to test JavaScript and PHPUnit is to test PHP. It is worth

mentioning that the other consideration from Jest was Mocha. The reason to which

Mocha was not chosen boiled down to the ease of setup/use, given that overall, they

are extremely similar in their abilities when it comes to unit testing, plus Mocha requires



Node.js to run. Our target testing metrics are two different types, test coverage and the

percentage of passed tests. Where the goal test coverage will be 50% of the code

depending on how difficult testing certain units end up being. The reasons why we will

test 50% of the codebase is development time and complexity of testing certain bits of

code. For example, to test some JavaScript functions that use ajax from jQuery, we

must set up an environment through a browser and test that ajax pulls correct

information. Moving onto percentage of passed tests, the goal here is to have 100% of

the tests pass no matter how niche a scenario may be, since the idea of testing is to

make sure nothing will break when in use. Most tests are to be run on GitHub Actions to

automate the process of running tests on a designated environment. If any tests cannot

be run on GitHub Actions due to something like the need to pull data from a database,

the test may be run locally/on a browser (i.e., Safari, FireFox, Chrome, etc.) to allow for

dynamic actions/data. Moving on to the details of the unit tests, the modules that we

plan on testing are as follows

● student.js

● student_result_page.js

● Any PHP file that is not directly called by the browser, i.e., only scripts that are

called by JavaScript

For testing the Student.js file, we plan on testing every function that has some

sort of return value that we are able to test. For example, we plan on testing the

updateGiveUpAttempt function by checking the local copy of the attempts that the code

writes to in order to render the correct attempt number live, as well as checking the

back-end side of things on the database by checking the value in the database against

the value we expect to be in the database. For example, we plan on having a test case



where one of us has our ID temporarily used for testing purposes, and we will run the

test on one of the questions on one of the quizzes to see if the database is updated to a

negative value and the array on the Javascript side is also updated to reflect the

change. For the equivalence partition of this function, any value that is less than 0 is

acceptable, as that implies that the database and local copy have both received the

value that signifies a give up attempt, while any value that is above 0 is not acceptable,

as that implies that the database and local copy have not received the sign that the user

has given up, which will cause errors for both the Javascript side, as the user can keep

inputting answers, and the database side, as the database will think the user has not

completed the question. Another function that we plan on testing is the isCorrectAnswer

function, and we plan on testing it by giving the function a mock question and a mock

answer position and having the function report back to us if the word is the correct

answer. We plan on writing 2 tests for this function, one test that should return that the

word clicked was the right answer, while the second function should return that the

answer was the correct answer. Any other results for these 2 tests aside from the

desired result is an invalid result. For testing with erroneous inputs, we plan on testing

functions mainly with parameters outside of their bounds. For example, we plan on

testing the isCorrectAnswer function with a question index that is outside the bounds of

the question to see if the code still functions with a bad input.

For testing the student_result_page.js, we plan on testing the results by giving

the function to pull the data from the database a test user, making sure that test user

has data for the desired quiz that we wish to pull data from, and then checking the

results once the data has been given back to the Javascript file. The only results that we

will accept are the exact results that we have in the database, as any other results imply

an error within the code.



For testing all of our php files, we plan on once again testing all of the php files

that have functions that give some sort of output. A lot of the php files that our team

currently has on our website are files that simply display pages, such as professor.php.

There is no unit for us to specifically test in this file, so these files will be excluded. The

files that we mainly want to make sure work are all of the files that read or write to the

database, as if they do not read or write correctly the entire site will not be functional. As

an example of the functions/scripts that we are going to test, we can look at the

student_quiz.php file, which reads all of the values that we need for a student to take a

quiz after it is selected on the homepage. The file reads in the students' attempts, the

questions that have been completed, the positions of the answers, and the attempt

number of the quiz the student is on (e.g., the student attempted the quiz 4 times so far,

so they start a 5th). As a quick side note, these are ways of cutting down inefficiencies

when it comes to querying the database many times. The way that we plan on unit

testing this file is by doing a mock reading from the database and seeing if the results

are what we expect them to be. For example, one of us will use our student id for

temporary testing, we will call the file to read the values from the DB, and we will then

call PHPUnit to test to see if the values that we got from the DB were what we expected

to get. This same procedure will occur for our writing operations as well, with the test

calling the write, doing a read from the DB, and using PHPUnit to see if the read

returned the value that was expected. The only values that we are going to accept are

values that entirely agree between the php and the database. There can be no error

writing into the database or else nothing on RedPen will work. We plan to also attempt

to write values that would not normally appear on RedPen, such as a very high integer

for attempts, to make sure that the database does not break when written to with an

erroneous input.



With all of this said, the final thing that should be discussed is how the database

will be designed for tests. This will result in having a test table to contain mock student

results. This will most likely be a fake semester table that will never be accessed by any

student that is not in the table students_Fall2023, that will be a fake student (e.g., eky0).

So when the tests are run, we should access this table instead of the current one. Then

as for when we check for alumni, we can query the script (yet to be implemented) with

the test username and return the results of if the user is an alumni to the class, i.e., we

can pull the correct semester information.

Integration Testing

Integration testing tests the interactions between software modules to ensure

they work as intended. Integration testing goes deeper than usability testing to ensure

that while it may look like it works from a user perspective, we also ensure that it does

what we’re expecting from a backend perspective. On top of that, when integration

testing, we can focus on subsystems that connect with one or multiple other systems.

When testing this way, we can test that the module being tested works with all the

connected systems at once, as well as with each part individually. This is particularly

important for our project because we are using multiple languages that don’t always

interact in easy or expected ways. Being able to break the tests down enough to test

both how the module works on its own and how it works with modules in a different

language is essential. Integration testing is especially beneficial when multiple

programmers are working together. This is because, while the style, structure, and

format they use may be different, a lot of the modules still have to be able to work

together. If there’s ever any way that the two styles won’t connect, integration testing

can find it.



Our approach for integration testing will be to start at the bottom and work up,

meaning checking that the lowest level system worked before checking the next level

up, and so on. This was decidedly best for us because we have a lot of interconnecting

lower subsystems, and very few high-level systems. If an error is found, we can reliably

assume that the cause is from the level that is currently being tested, and when we

move on we can be confident that the level is working as it should. In our case, this will

start with checking the program's ability to send or retrieve data to and from the

database. To do this, we will create test functions that test specific PHP operations and

functions. These functions will often be hard coded to match the database so that the

check can simply be true or false. Either it got the right data, or it didn’t. This will check

both values that may have been sent to the functions and the values that it would return.

Once every result of this has been tested, we can then move on to the next level. In

some cases, this will involve JavaScript operations, but in most, this involves HTML. In

the cases of JavaScript operations, it will be fairly easy to test. First, those systems will

be tested individually with simple and potential edge case data points, in some cases

this will require a test table that can be freely altered with no issue. A function that

passes in specific requirements will be made, and if there is a return, once again it will

be hard-coded to check the desired results. For the HTML connections, we will be using

Python to test the interactable elements. This sort of test will be fairly straightforward in

most cases, as the element either exists or doesn’t, and the element does what it’s

supposed to, or it doesn’t. The HTML side of our website isn’t overly complicated most

of the time. The more complicated HTML comes from the student's results, and in those

scenarios, the data comes from Javascript and PHP files that should be tested at the

level before. On top of that, the HTML will be getting most of its checks from the

usability and unit tests. Because of that, from the integration testing side of things, we



should only have to worry about the functions they're connected to, sending off the right

data.

If at any point errors or even concerning data is found, it will be marked

thoroughly with important details and perhaps even screenshots to be checked later.

Once all the other systems of that level are finished being tested, then the tester will

return to the data that was marked for correction and further testing. Once the concerns

have been resolved and the corrections made, the whole level is to be tested again to

ensure that the changes didn’t alter anything else. Once no errors are found the tester is

allowed to proceed to the next level. This has been established this way to ensure

confidence in the previous level tested. If we marked an error but didn’t fix it until after

everything had been tested, we would not be able to reliably evaluate the results of the

level above and the following testing would end up taking more time. In the case that an

error isn’t found until testing the next level above, it is made clear that the tests for that

level are not thorough and both the system and the test for the system should be altered

immediately.



Usability Testing

Usability testing is a crucial phase in the development of any software or website,

including our online quiz editing website, “Red Pen”. It focuses on evaluating the user

experience by observing how users interact with the system. The primary goals of

usability testing are to identify usability issues, gather feedback on the user interface,

and ensure that the system meets the needs and expectations of the target audience.

Given the nature of our product, which is an online quiz editing website designed for

higher-level English classes, several considerations have influenced our approach to

usability testing:

Target Audience: Our online quiz editing website is specifically designed for a

niche audience comprising online professional writing graduate students and technical

writing undergraduate students at NAU. These individuals are characterized by their

commitment to honing their writing and editing skills to excel in their academic and

professional pursuits. As such, our platform serves a dual purpose: to assess their

existing knowledge and to impart new insights and techniques relevant to the field of

professional writing and editing. Given the specialized nature of our target audience, it's

crucial that our website caters to their unique needs and expectations. These students

are likely to possess a strong foundation in writing and editing principles, but they may

vary in their familiarity with digital learning tools. Therefore, the website must strike a

balance between sophistication and accessibility, offering advanced features while

ensuring ease of use for all users. Furthermore, our target audience consists of

individuals who are preparing for careers as professional editors and writers. As such,

the quizzes on our platform are not merely assessments but also learning opportunities.

Each quiz is designed to impart practical skills and knowledge that are directly



applicable to the real-world tasks and challenges encountered by professional editors

on a daily basis.

Consequences of Bad Design: The implications of poor design in our online

quiz editing website extend beyond inconvenience; they can hinder students’ ability to

effectively practice and apply the skills they are learning. Inaccurate feedback or

confusing instructions may lead to misunderstandings and frustration, undermining the

educational value of the quizzes. For students aspiring to become professional editors,

the consequences of bad design are particularly significant. A poorly designed interface

can erode confidence in the accuracy and reliability of the platform, undermining its

credibility as a tool for skill development and practice. Moreover, it may discourage

students from fully engaging with the material, limiting their opportunities for growth and

improvement.

Novelty of Product: Our online quiz editing website takes a fresh approach to

learning and skill-building in the professional writing and editing realm. Instead of just

testing what you know, our quizzes also teach you new concepts and techniques. This

makes it a one-of-a-kind tool for students who want to boost their editing skills. Unlike

typical quiz platforms, our website is made specifically for aspiring professional editors

and writers. Each quiz is designed to mimic real editing situations, giving students a

chance to practice skills they'll actually use in their future careers. This helps bridge the

gap between theory and real-world application, giving students the practical know-how

they need to stand out in the competitive world of professional writing and editing. In

short, we've tailored our platform to meet the unique needs of our users, ensuring it's

both user-friendly and packed with valuable learning opportunities. With our innovative



approach, we're set to revolutionize the way students learn and grow as editors and

writers.

Testing Plan: The primary objective for this usability testing plan is to have a

thorough evaluation of the user experience with Red Pen, we want to make sure that it

meets the needs of our sponsor as well as the students using the online application.

We have decided to ask Dr Konrad and possibly some of her students to test the

pages that we have created and possibly give us some feedback on what they like and

what improvements could be made with these pages. We have decided that Dr. Konrad

would test out the admin side of our website as she will most likely be the only one

using the admin pages and because no one else would have access to those pages

except herself. Some of her students are going to be testing out the student side of the

website and we will ask them to give us as much feedback as possible about what they

like and the things our site could improve on. If Dr. Konrad is not able to get any of her

students for testing. We will be asking some of our fellow classmates if they can take

some time to help us test the site and give us feedback. The main goal for this testing is

to ensure everything is working as expected. The person testing for the professor side

would want to make sure that they’re able to successfully create quizzes and publish

them for students to see, as well edit them and delete them. The tester should also be

able to view the stats for the students when a test has been completed as well as view a

graph that summarizes some of that information. On the student side, We want to be

able to take the quizzes created by the professor, view progress of the quiz and see the

quiz scores as well. To finalize our testing. We want to make sure that all of the pages

can be used efficiently. We want to make sure each button on all pages does what it's

supposed to do and everything is displayed in a properly formatted way. We also want



to make sure we can navigate to any page in the website without any problems and

there are no incidents where the site could possibly crash.

Conclusion

After discussing all of our plans for testing, including how we plan to do Unit Tests,

Integration Tests, and Usability Testing, we believe that we will be able to make RedPen

into a product with minimal bugs. First, with our Unit Testing, we will be able to validate

the correctness of many of the units that comprise RedPen and let it function. Second,

with our Integration Testing, we will make sure that all of our individual modules work

together and give the results that are expected. Finally, with our Usability Testing, we

will make sure that RedPen is the best product that it can be for the users. That is our

plan for how we plan to test RedPen at every level.


