WHRAT'S UP DOCY

Software Test Plan V.1 - Fall

11/11/2022

Project:
C & | Doctoral Tracking Tool

Project Sponsor:
Gretchen McAllister

Faculty Member:
Michael Leverington

Team Name:
What's Up Doc

Team Members:
Adam Larson (Lead), Brandon Shaffer, and Eddie Lipan

Team Mentors:
Daniel Kramer

Table of Contents

1.0 Introduction

2.0 Unit Testing

3.0 Integration Testing
4.0 Usability Testing

5.0 Conclusion

12

15

16

1.0 Introduction

Team What’s Up Doc is tasked with producing a practical and approachable
website application that will allow graduate students within the NAU Curriculum and
Instruction (C&l) Doctoral Program to track their own progress and allow administrators
to analyze how students are doing within the program. Graduate students will be able to
access a visually appealing dashboard that presents them with the different phases
required to complete the program. Students will be able to tab between phases and look
at individual milestones within each phase. Within these individual milestones, students
can download blank copies of the documents needed to complete the milestone, or
students can upload completed documents. Once a completed document has been
uploaded, the dashboard will visually update the “milestone task bar” at the left side of
the screen to indicate that the milestone has been completed. Once all milestones have
been completed within their respective phase, the appropriate phase tab within the
“‘phase progress bar”, at the top of the screen, will change colors to reflect this
completion.

This website application is also intended to make the administrators lives easier
as well. Initially, administrators were tasked with receiving and tracking all relative
deliverables for the students within the program. This led to a large amount of overhead
as students had to inquire about deliverable completions via email interactions and
administrators had to actively track and find deliverables in their local file directory,
which is time consuming. Our application will place the “data entry” responsibilities on
the graduate students themselves which frees up time for the administrators to focus on
program content or program analysis.

With these motivations in mind, Team What's Up Doc will be performing
extensive software testing. Software testing is carried out in order to assure that our
product is doing what it is supposed to be doing. For months now we have been
meticulously designing and integrating different ideas and systems into a single
cohesive website application, and now we have to prove that our work does what is
intended. Not only is software testing an assurance of sorts, but it also protects us from
bugs, reduces future development costs and improves application performance.

With that in mind, this document will now segue into the specific testing being
performed for our application and how it is being done. Utilizing tools such as Chrome
DevTools, Postman, and Spring frameworks, the developers are able to carry out a
plethora of tests. Chrome DevTools helps with Unit Testing, Integration Testing and
Usability Testing, while Postman and Spring Boot help a lot with Integration Testing. The
particular units being tested will focus on user security, user uploads, and making sure

that the correct sensitive student information is being shown to the right people. This will
require access tokens and a good stream of communication between the web
application and the database server. Considering our application is related to data entry,
data tracking and data retrieval, most of our testing will relate to making connections to
our database.

2.0 Unit Testing

In software, a unit is the smallest testable component of an application.
Therefore, completing unit testing entails making sure that particular methods, objects,
and packages used in the code are working as intended. Unit testing is generally
performed by the developer during the development process and can be done manually
or automatically. The units being tested for this application are as follows: sign in with
Google button, accurate redirect to appropriate home page after sign in, accurate
exchange of JWT, accurate upload of unique student files, accurate download of unique
student files, accurate updating of milestone/phase colors on webpage (completed
phases/milestones are gold), accurate requests made to database in order to populate
admin tables, CRUD capabilities for student table, and a proper search bar that allows
the admin to view a students unique home page embedded within the admin home

page.
2.1 Website

Most of the team’s unit testing for the front end has been done manually. This is
solely due to the fact that the developers are coding these web pages using HTML,
JavaScript and CSS and rely heavily on manipulating the pages through minor tweaks
in the code. After a minor change in one of the local source files is carried out, we
update the main server with the updated source file and refresh the web page to view
our code change and its effects in real time. This leads to a general back and forth
between writing code and pushing the changes to assure that the webpage is reflecting
the changes you intend to make. Naturally, this coding process is very friendly to unit
testing and allows the developer to assure that the code they have written is functioning
properly before moving on to another part of the web page.

In particular, using tools such as Chrome DevTools allows the developer to view
their web page in real time and isolate particular elements for testing purposes. In
graphic 2.1.1, you can see the landing page to our application and the user is
highlighting a line of code from the index.html source code in the Chrome DevTools
“‘Elements” window:

Welcome to the Curriculum &
Instruction Doctoral Tracker!

Graphic 2.1.1: Chrome DevTools in action

The user is hovering over a div in the html code that encompasses the entirety of
the “login window”, hence why Chrome DevTools is highlighting the respective login
window on the left side of the graphic. This is useful for unit testing because it allows the
developer to map what code is affecting a particular part of the web page. For example,
if the developer had intended for the carrot graphic, seen above in Graphic 2.1.1, to be
within the login window instead of outside the login window, this tool explicitly lets the
developer know that the code for their carrot graphic is not in the intended place.
Chrome DevTools allows the developer to view other windows that relate to the console,
network, performance, security, and memory of the web page, all of which are
invaluable for unit testing. We will highlight a few of these DevTools tabs in the sections
that follow. With Chrome DevTools in mind, we will shift to each individual web page
being used on the front end and articulate the relevant unit testing being performed for
that page.

2.1.1 Landing Page - index.html

With regards to the web application’s landing page, there are two noticeable
features that involve unit testing. The first feature involves correctly incorporating
Google Identity Service’s code so that the recognizable “Sign-In with Google” button
appears correctly within the login window. Graphic 2.1.1.1 illustrates Google’s code in
the index.html file, with sensitive information temporarily removed:

data-client id="INSERT DATA CLIENT ID"
data-auto _select= 2

RT REDIRECT URI™
data-itp support="true”

div class="g_id_si
data-type
data-shape=
data-theme="filled blue"

data-text 1 with™
data-size '

data-locale="en-Us"
data—l{rgﬂ_alignme r|t=” -_E_-': "
data-width="275"

Graphic 2.1.1.1: Google’s Sign in button code in use

With a proper amount of research into Google’s extensive documentation and some
manual unit testing, the developers were able to incorporate Google’s sign in button
seamlessly into their web page. The developers were also able to customize the
button’s size, shape, color as well as where the button would redirect to upon sign in.

Unit testing was conducted specifically on the data-login_uri variable to ensure
that when a user logs in using their NAU gmail, the home page they get sent to is in fact
their home page and not another student’s home page. Considering this is a College of
Education web application, the security and privacy of the students and administrators
is of utmost importance and we cannot allow students to be redirected to another
student’s home page. The unit testing for this feature entails receiving a JSON Web
Token from Google after the user has successfully logged in with an NAU associated
gmail account, properly decoding the JWT, stripping the user’s NAU userID from the
decoded JSON body and passing it in the appropriate spot within the data-login_uri
string.

The second feature that needed extensive unit testing relates to the JSON Web
Token (JWT) mentioned above. The developers need to ensure that the encoded JWT
response received from Google is properly decoded. Without properly decoding the
JWT, the developers will have a payload they cannot manipulate. Once the JWT
payload has been decoded, the relevant access tokens and user information need to be

exchanged with the back end database in order to ensure that the user ends up at their
own respective home page and that when they make a change on their student home
page, it is properly reflected on the back end. This feature is crucial for the overall
security of the website application and must be completed with care.

2.1.2 Student Home Page - home.html

The student home page is hosted on the home.html file. The relevant unit testing
for this involved the various database interactions and the interactivity of the website
itself. The page needed to dynamically change color based on the database, and
change its layout based on user interactions. The layout of the webpage is a series of
nested drop downs that, when clicked, needs to show the relevant submenu. The
website, on loading, needs to contact the database and retrieve a list of the logged in
user’s complete list of uploaded files. For testing purposes, the retrieved list is being
displayed on the console log so that any bugs can be troubleshot. Should an element
not react to the presence of its corresponding file, we can check the retrieved list
visually to ensure that the request was correctly made. The displayed list also aids the
testing of the upload functionality of the website.

The website will need to be able to upload a file from the local computer to the
remote database, and store it under the correct name and user. Testing this functionality
required uploading random files and checking the list of uploaded files for the
corresponding file. When the download function was implemented, that too was used for
testing by downloading the uploaded file.

Downloading files from the database via the website was the last major
functionality that required maijor testing. Testing the download function consisted of
uploading files under various categories and then downloading them, and ensuring that
they are the correct file.

2.1.3 Admin Home Page - admin.html

The administrator’s home page resides within the admin.html file and the unit
testing relevant for this file involved the different tables being used on this page and
being able to tab between the three features available to the admin. The administrators
have access to three buttons which lead to two tables and a search bar. The first button
should bring up the “Add/Remove Students” table. This table allows the admin to
add/edit/remove students to and from the graduate program. This is a vital feature of the
page as the admin has total control over which students are in the program and as
such, they are the gateway for the student to be able to use this web application.
Administrators must be able to add/edit/remove students on the front end and have it
visually update the table in real time. Administrators need to be able to accurately sort
students by any column they want and they should be able to search the entire table by

keyword. If the admin clicks the second tab at the top of their screen, labeled “Phase
Review”, it will bring up the second relevant table. This table is linked to the first table
and as students are added to the first table, they must show up in the second table as
well. Lastly, the third tab labeled “Student Progress Viewer” should allow the admin to
search the program for a student, by their userlD (explicitly) and it will bring up an
embedded view of that student's unique home page with their completed milestones.
This page is very graphic intensive and when the user does an action it needs to be
accurately reflected in real time on the appropriate table.

2.2 Server

Using Spring Boot as our REST API framework, a significant amount of support
is available for testing. It provides us with the ability to run unit tests using either JUnit4
or JUnit 5 and using a mock servlet environment. These tests require little set up as the
framework allows some simple annotations to be placed for appropriate execution.

Unit testing in particular is very easy in that controller code is the only part
needing testing. All methods through the program are run through the controller when
an endpoint is accessed. Simulation of requests to these endpoints as well as
pseudo-data allows each to be tested for normal and fringe inputs. An example of this
can be seen in the following:

@RestController
@RequestMapping("/api")
EmployeeRestController {

@Autowired
EmployeeService employeeService;

@GetMapping("/employees")
List<Employee> getAllEmployees() {
employeeService.getAllEmployees();

Graphic 2.2.1: A controller example with basic functionality

@RunWith(SpringRunner.class)
@WebMvcTest (EmployeeRestController.class)
EmployeeRestControllerIntegrationTest {

@Autowired
MockMvc mvc;

@MockBean
EmployeeService service;

// write test cases here

Graphic 2.2.2: Class set-up for test cases
(Ignore the integration test class name - the tutorial being referenced combined them
and named the class for the initial testing)

@Test
givenEmployees_whenGetEmployees_thenReturnJsonArray()
Exception {
Employee alex = Employee("alex");

List<Employee> allEmployees = Arrays.aslList(alex);
given(service.getAllEmployees()).willReturn(allEmployees);

mvc.perform(get("/api/employees")
.contentType(MediaType.APPLICATION_JSON))
.andExpect(status() .is0k())
.andExpect(jsonPath("$", hasSize(1)))
.andExpect(jsonPath("$[0].name", is(alex.getName())));

Graphic 2.2.3: Test case for the above class

Unit tests set up in such a way allow us to take advantage of the framework's
testing suite and its use of annotations to create requests and act on mock data. The
@Autowired annotation creates an object that can be acted on to make http requests
and match details of responses to pass or fail. @MockBean on the other hand provides
a bootstrapped instance of the necessary classes for a test case.

In terms of our products end points, several tests will need to be performed on
each to provide adequate confidence on proper functionality. For normal requests
retrieving JSON information, the tests would include standard operation, incorrect
formatting and types, and using alternative request types. Authentication access errors
would also be tested for in this area, though due to time constraints and challenges,
these will not be present in actual testing. Posting, deleting, and updating data tests will
function similarly but an additional check for filtering things like SQL injection.

The goal is to pass all tests run, and modify as necessary. Some assumptions of
additional tests are present, but not accounted for within this document and may arise
during testing sequences. Additionally, the Spring framework offers a number of
auto-configured tests flagged with specific annotations. While no plans to use them
currently exist, there is consideration to include these if necessary.

2.3 Database

Unit testing of the database is both challenging and lightweight. It is challenging
in the fact that while MySQL provides some information on implementation within their
documentation, it doesn’t seem to provide enough to quickly set up a test suite like the
server. On the other hand, it is far more lightweight as testing should go quickly using
various sequel statements to ensure proper input, output, and sorting occurs.

As of writing, there appears to be two quick ways to implement this. First would
be a simple shell script that performs sql commands and outputs everything from the
test file. This would be very quick to set up, however passing and failing would be
manual and it would likely be just as quick to manually make the sql calls and inspect
each for proper functionality. The second and probably more reasonable option is
creating a view from a SQL query then creating a test-query within it. This view can
contain multiple tests, which can output either individual results or create a separate
database containing the results. This option sounds significantly better than manually,
however, this was the only quick implementation found - many suggested writing their
own libraries to automate unit testing regularly. Unfamiliarity with both view queries and
scripts within MySQL makes this more difficult to understand if and how to implement it.

The testing plan will consist of this latter method first, with the fall back of manual

testing and documentation of the process and outputs. Examples of the implementation
are as follows:

10

1 create or replace view

2 my_query

3 as

4 [FeTect personid

2 I, to_char{login_tise, "HHI4:MI") block_start_logim_time

B |from logins

7 |match_recognize (

8 partition by personid regard avery person independently

9 order by legin_time

12 measures

11 match_number() wr,

12 block_start.login_time as login_time

13 one row per match every block is represented by a single record

14 pattern (block_start same_block®) -- collect a log dn record and all subsequent rows 1n 3
15 define

16 same_block as {login_time <= block_start.login_time + interval "2° hour) a logi

17 i

Graphic 2.3.1: Creating the view (very low resolution only - sorry!)

with result_to_verify as
(select block_start_login_time login_time

w N =

from my_query
where personid = 1

, expected_result as

(select '00:00' from dual
union all
select '92:39"' from dual

@ W oo N Oy b

union all

11 select '04:59"' from dual
12)

13 (select *

14 from result_to_verify

15 minus

16 select *

17 from expected_result

18) -- superfluous results
19 union all

o (

21 select *

22 from expected_result

23 minus

24 select *
25 from result_to_verify
26) -- missing results

Results Explain Describe Saved SQL History

no data found

Graphic 2.3.2: Sample code to include within the view
As stated prior, implementing this testing depends heavily on quick

understanding of unfamiliar sequel tools. It does seem plausible however, and results
would provide “no data found” on a successful test. If this was unable to be

11

implemented successfully, results of manual tests would be required to prove successful
operation. Results would primarily need to include the select, insert, update, and delete
functions.

3.0 Integration Testing

Proper integration testing is a vital component to the success of this web
application. Without proper integration testing, users would never be able to make it
past the landing page of our web app. Therefore, we must ensure that our web app is in
contact with our database server.

This web application requires the user to sign in using a verified NAU gmail, and
once that has been carried out, the application must then recognize whether the user is
an admin or a student. Student’s must be redirected to their unique student home page
and admins must be redirected to the admin home page. Any mistakes here would lead
to grave security concerns. Once past the landing page, the web application relies on
the back end database to populate tables for the admins or update the dashboard for
the student with accurate and current data. Without Integration testing and a successful
discourse between the front end and back end, our web application would be nothing
but static pages.

3.1 Website - Server

The integration testing carried out on the front end was aided by Chrome
DevTools and Postman. Initially, Postman was used to ping our database and receive
initial contact. Once a proper “GET” request could be made from Postman to our server,
the developers began making requests to the database in the appropriate JavaScript
files within the web application.

The index.html file, that renders the initial landing page, has one connection to
the database. The index.html file, upon successful login by a student or administrator,
must be able to receive a JWT payload from Google servers and decode the JWT
payload. Then, the appropriate user information, such as first name, last name, userID,
email and access tokens must be sent to the back end for verification. Once the access
tokens and user information have been verified, the user’s userlD and any relevant
access tokens are sent back to the front end so that the user can be properly redirected
to their unique home page or the admin home page.

The home.html file, that renders the student’s home page, must be able to
accurately and securely lead the student to their unique home page from the landing
page. The student should then be able to upload completed deliverables to their
milestone dashboard, which must also send the file to the database to be saved. Any

12

time the student loads their unique home page, the web page must be in contact with
the database in order to accurately recognize which milestones have been completed
and, as a result, accurately change the colors of the progress bar/task bar to reflect
what has been completed.

Finally, we reach the admin's home page which is contained within the
admin.html file and admin.js file. Again, the admin must be properly redirected to this
page from the login page, and this must be done securely. Students should not be able
to access the admin home page under any circumstances. Once an admin has been
properly redirected to this web page, they should have access to two tables. Both tables
are constantly receiving data from the database server via “GET” requests. Since the
developers implemented CRUD functionality on the back end, they decided to
implement their own CRUD buttons for each table using “POST” and “PUT” requests
where necessary. As CRUD functions are carried out, the action needs to be reflected
on the back end, which in turn alters the table on the front end as well. Our front end is
basically a Graphical User Interface (GUI) that has to look and feel like the user is
making changes on the front end and know that their changes are being saved on the
back end as well.

3.2 Server - Database

Integration testing is made easy through Spring’s test suite, very much like its
unit testing. It's nearly identical in set up and function, though it includes the connection
to the database through either the CRUD or JPA repositories used by the program. Set
up does require modifications to a testing application.yml (or application.properties) file
as the current test plan includes using in-memory H2 persistence storage. To add this to
the suite the following must be included within the properties file:

spring.datasource.url = jdbc:h2:mem:test
spring.jpa.properties.hibernate.dialect = org.hibernate.dialect.H2Dialect

Graphic 3.2.1: Application.yml (or .properties shown) modification for H2 persistence

As mentioned above, set up for integration tests include some of the very same
elements as unit testing. Where these vary is within communication with the database
and what is being used as the test element. Instead of sending a mock element into the
test to have it acted on and compared, we will be sending an object of normal data.
Examples of the annotated class and test case are as follows:

13

@RunWith(SpringRunner.class)
@SpringBootTest(
SpringBootTest.WebEnvironment.MOCK,
classes = Application.class)
@AutoConfigureMockMvc
@TestPropertySource(
locations = "classpath:application-integrationtest.properties")
EmployeeRestControllerIntegrationTest {

@Autowired
MockMvc mvc;

@Autowired
EmployeeRepository repository;

// write test cases here

Graphic 3.2.2: Example annotated class
(named the same as the unit class - more annotations here)

@Test
givenEmployees_whenGetEmployees_thenStatus200()
Exception {

createTestEmployee('"bob");

mvc.perform(get("/api/employees')
.contentType(MediaType.APPLICATION_JSON))
.andExpect(status().is0k())
.andExpect(content ()
.contentTypeCompatibleWith(MediaType.APPLICATION_JSON))
.andExpect(jsonPath("$[0] .name'", dis("bob")));

Graphic 3.2.3: Example test case

Using the additional annotations to include the bootstrapped program with H2
persistence, and with the simple test case inclusion of an item to be saved, allows
integration to be easily tested. It is nearly identical to unit testing within Spring’s suite of
testing, but with few key differences.

Test cases for implementation within these systems is primarily based on proper
data being moved from the CRUD/JPA repositories to and from the database. These will
follow suit of the unit tests, with a significant sign of failure if one passes and the other
does not.

14

4.0 Usability Testing

Usability testing is the process that intends to ensure a product’s viability with the
end user. Since our potential users cover a wide variety of ages and technical skills, we
will need to ensure that the interface is as accessible as possible. Due to the fact that
accessibility is more of a subjective metric, we have and will rely on focus group testing
with users.

4.1 Website

To test the usability of the website we have been meeting with our client weekly.
At these meetings we familiarized her with the recent updates to the system’s functions
and layout. In the upcoming three weeks, we plan on setting up a focus group with the
client’s students over zoom. With this focus group we will gather qualitative data on the
user interface. We will start the session by going through the basic functions of the
student-side interface. After going through the interface with the students, we will
proceed to answer any questions from the group. Then we will ask for their opinions of
the interface. During the focus group, one of us will be taking down notes of the
questions the group asks, and their feedback. After the focus group, we will look
through the notes and see what improvements we can make, based on the feedback
and questions, within the time we have left.

For the client meetings we have been doing something similar in that we walk
through the interface and let them ask questions before asking for specific feedback.
The key difference here is that we show them the administrators interface as well. We
will continue to meet with the client to fine tune the interfaces’ layouts.

15

5.0 Conclusion

Team What’s Up Doc was tasked with creating an approachable application for
NAU’s C&l Doctoral Program, for the purpose of tracking students’ progress with their
doctorate. The application required a remote database for the storage of students’ files,
as well as a front-end website for users to interact with the database. The website will
need to upload and download from the database, as well as provide an interactive
interface to display progress for users. The website would also need a separate
interface for faculty users to check the progress of various students and search the
database for various statistical metrics via spreadsheets. To ensure that our product
meets the requirements as set by our client, we performed various tests on each
element of the product. The database was tested for its file storage and
responsiveness, while its connections were tested with the Spring test suite. The front
end’s tests, consisting of focus groups as well as functionality tests, will help ensure the
product will be completed with error-free functionality.

16

