Software Testing Plan

Version 1.0
March 20, 2021

Team Poseidon Way-Finding

Sponsor: Michael Leverington

Faculty Mentor: Han Peng

Fernando Diaz
Ulugbek Abdullayev

Brandon Jester

Jonathan Gomez

1.0 Introduction

2.0 Unit Testing

3.0 Integration Testing
4.0 Usability Testing

5.0 Conclusion

-_

N o o N

1.0 Introduction

Robotics has been an area of interest for almost as long as computer science has been.
The concept that machines could be given a task and complete it more efficiently than a
human could has been even more prevalent in the past few decades than ever. This
trend will only continue as technology and automation become more pervasive in our
everyday lives. Because of this, robotics has been a continuously growing sector of
computer science and will remain integral for decades to come. In the past, the main
inhibiting factor to robotics was its power, cost, and complexity. Electronic components
needed for robots have become significantly cheaper while simultaneously becoming
more powerful. Because of the costs, in the past, there has been a severe lack of
learning opportunities for students to use a physical robot until now. Robotics in
classrooms has been too expensive to create and use. However, it has become feasible
to create fully autonomous robots that remain inexpensive.

The client, Dr. Michael Leverington, is a lecturer of computer science at Northern
Arizona University (NAU), and his goal has been to forge the minds of future computer
scientists. His business has involved teaching students to problem solve and teaching
them to solve otherwise complex problems. His motto relies on his ability to forge young
minds to wield the powers of technology, mainly computer programming. Dr.
Leverington is interested in robotics and has seen this decrease in cost and lack of
educational opportunity and came up with a solution to it. His answer is to develop a
flexible, cost-effective robotics platform in college-level programs for educational
purposes.

To accomplish that robotics platform, Dr. Leverington made the thirty-gallon robot,
initially known as the robot-assisted tours or RAT. The thirty-gallon refers to the tank
which encases the robot’s components. The thirty-gallon barrel uses a wooden dolly as
the base and has access to components such as two motors and a Raspberry Pi. The
components in total cost approximately $1000. For students to use the thirty-gallon
robot as an educational tool, it needs to be autonomous and support programmability. A
student could create their robotics application or program and get hands-on experience
with an actual robot; their program would use the robot’s movement and navigation. The
student would not have to worry about implementing these advanced modules.

2.0 Unit Testing

The purpose of unit testing is to ensure that even the smallest functions, parts, or units
of a software project work as intended. The code is tested in small pieces called units.
These units are given tests with certain input, usually decided by the developer, and
then is checked against the expected output after the unit has been run. If the real
output matches the expected output, then the test passes, and otherwise will fail. Often
these units will be tested before and after the code and program changes to make sure
that the changes made did not break any part of the program.

For this project, images are the primary data being used within the program. It relies on
the processing and manipulation of this data. These images are gathered from the
Kinect sensor during program operation. For testing, images are too complex to
determine the expected output manually. To illustrate this, the simplest example of a unit
test would be a sum function that takes two numbers, adds them together, and gives the
result. This function may be tested with numbers, two and three against the expected
result, five. This test would pass, but it was much easier to determine what the end
result should be. For an example of image data, one function we use is to flip the black
and white colors of an image. The images we process are 640 by 480 pixels leading to
a total amount of just over 300,000 pixels. Even with a single image, determining every
expected pixel value would be too time consuming. Therefore, our unit tests will be
concerned with all parts of the program that do not involve returning images as result of
computation.

To test the software, the team will be using the unittest module for Python. This module
gives the tools necessary to create multiple tests for our code. These tests will be run to
find any errors or bugs that the software does not handle. In the next sections, we
outline the module the units belong under and discuss which units will be tested.

2.1 Control Module

The control module is solely concerned with and responsible for sending the output
signals from the Raspberry Pi’'s GPIO pins to the motor driver boards. The robot is too
unbalanced to handle large movement speed changes in a quick amount of time. Doing
so could result in the robot jostling and possible tipping over. In order to account for this
the function for sending signals to the motor drivers must ramp up and ramp down the
speed smoothly.

e Motor Speed - The unit tests for this module are simple in any function such as
move_forward(), can be tested against what the expected signal is from the

GPIO pin. If the value of the signal is HIGH or ON then the test will pass.
LIkewise, testing the stop() function with the signal value of LOW or OFF will
pass.

e Motor Direction - One pin controls the direction that the motor is set to.
Depending on the configuration of the motor, a HIGH or LOW signal will result in
clockwise or counter clockwise movement. These pins can be read identically to
the pins that control speed. For forward movement, we test that the robot’s left
motor direction pin is set to HIGH and the right pin is set to LOW since the
motors are flipped but wired the same. For a left rotation, we test that both
direction pins are set to HIGH to ensure that they are moving in opposite
directions to create rotation.

2.2 Computer Vision and Obstacle Avoidance

These two modules are responsible for gathering the images from the Kinect sensor
and raspberry pi camera and manipulating them to create the obstacle avoidance
algorithm and to determine each end of the hall. As mentioned earlier, operations that
return images as a result are too complicated to test accurately, so all other operations
will be tested.

Figure 2.2.1 and Figure 2.2.2 Example Depth Images

e Obstacle Edge Detection - An important part of the obstacle avoidance algorithm
is determining the side in which an obstacle is primarily on. Knowing which side
the obstacle is on also determines which side it is not. This allows for rotating to
the opposite side where an opening would be found much quicker. For this unit, it
takes the depth image, finds all black pixels which equate to pixels of an object

that is too close, and counts the total amount for each side of the image.
Whichever side has more pixels found, that side is where the obstacle is
primarily. Figure 2.2.1 shows an example depth image. In this example image
there would be more black pixels detected on the right side of the image and
detect the right side. And Figure 2.2.2 shows a depth image where more pixels
would be detected to the left side. To test this unit, we use input images and an
observation of which side an obstacle would be on.

Obstacle Detection - The detection of an obstacle relies on finding the total area
of these black detected pixels. If the total amount of pixels found is greater than a
chosen value, the function returns true. A true result equates to an obstacle
being detected. To test this we assert that with a given input depth image that an
obstacle would be detected or not.

Opening Detection - The principle used for detecting obstacles is nearly the
same for detecting an opening in the path. The major difference is that the
algorithm is counting the area of white pixels, or pixels belonging to objects out of
range. The camera must also detect the majority of the pixels within the middle of
the screen so that the robot can move forward through it. Testing this involves
giving input depth images and the expected result whether an opening is
detected or not.

Lobby and Door Detection - Both ends of the hallway are detected using a
machine learning model. Videos are given to the model which help to train it in
deciphering what features belong to which end of the hallway or if they belong to
the hallway itself. During runtime, the Raspberry Pi camera’s images are
captured and given to a function that uses the model to predict where the robot is
in the building. For testing, we give the function images of both ends and the
middle of the hallway. We assert that the given result should be what the image
shows.

3.0 Integration Testing

The goal of integration testing is to bring together the components of the overall system
in the Thirty Gallon Robot, in order to ensure that the product as a whole operates as
expected. Integration testing will mitigate any possible bugs and errors in the
communication between the modules that have been developed to run the autonomous
module and obstacle avoidance. Once the product has been tested, the team will be
able to move to the final tests of the obstacle avoidance module. The tests of the Thirty
Gallon Robot are conducted across the long hallway of the second floor of the
engineering building.

3.1 Obstacle Avoidance and Autonomous Movement

The obstacle avoidance module works closely with the autonomous movement module,
data given to the obstacle avoidance module takes 200 hundred milliseconds to process
through the Raspberry Pi. As such the Raspberry Pi uses part of its processing power in
order to gain information, such as obstacles and the end of the hallway. Computer
vision uses the images received through the Raspberry Pi camera installed into the
robot, and in order to find the end of the hallway, it attempts to recognize the differences
in color and type of the material in the hallway. Because the lobby uses carpet, the final
strip of the hallway is darker, the module attempts to detect it. However, this system is
not perfect and might give false positives, as such the module must get three
consecutive positives in order to recognize the end of the hallway. The other end of the
hallway has a door instead of open carpet, and computer vision is also used here for
detection accuracy. This approach also uses three consecutive positives in order to
ensure the door is detected as the end of the hallway.

The autonomous movement interacts with the obstacle avoidance module in order to
turn around when the end of the hallway has been found. However, the obstacle
avoidance module must also recognize any possible obstacles, as such a more
generalized approach is used in order to create a better degree of practicality. This
approach uses OpenCV in order to detect obstacles. This solution is desirable, as it
allows the Thirty-Gallon robot to save on computation resources and ensures a good
degree of speed in other processes such as detecting the end of the hallway. The
autonomous movement is used in order to navigate around an obstacle, depending on
the manner in which the obstacle is placed, if the obstacle is on the right hand side then
it circumvents the obstacle by moving to the the left hand side and vice versa.

3.2 Hardware and the Raspberry Pi

The hardware of the robot integrates with Raspberry Pi through the GPIO pins that
connect to the motor drivers. The Pi connects to the sensors through USB, with the
Kinect and through a ribbon cable for the Raspberry camera. Integration between all the
components allows for a smooth functioning of the Thirty Gallon Robot, as it must
operate the motor drivers for movement, and use the external sensors to determine
where the robot should move. As such it is crucial that it has a complete connection to
the Raspberry Pi.

The Kinect is used in order to give live data about the environment that is being
traversed and any possible obstacles present. The secondary camera is used in order
to detect the end of the hallway, and constantly interacts with the computer vision
function of the obstacle avoidance module. By using the hardware of the robot in
tandem with Raspberry Pi, the obstacle avoidance, and autonomous movement
module, the hardware in the robot is able to be fully used in order to move across the
long hallway of the second floor of the engineering building.

4.0 Usability Testing

Usability testing is one of the most important aspects of a software system. End user interaction
is ultimately what the software design revolves around and testing the agility of the application is
required before the deployment of the software into a platform. There are many usability testing

methods and picking the right one is crucial for the success of the project.

4.1 Qualitative Usability Testing

The thirty-gallon robot is built around automation and machine learning therefore minimal
end-user interaction is needed for the operation of the robot. However, since minimal user
interaction is needed for the front end of the application, there will be a command line user
interface to communicate between the thirty-gallon robot and the end user. To ensure that
appropriate measures are in place to satisfy the user experience, we conducted qualitative
usability testing. As a facilitator, we asked participants to perform end-user operations using the
command prompt connected to the raspberry pi remotely. As required from our client, we need
to ensure that there is minimal interaction between the end user and the robot. To that essence,
the end user will need to initiate the program by executing the python command “python3
thirty-gallon-robot.py” from one end of the 2nd floor hallway of the engineering building. Once
the command is initiated, thirty-gallon robot will start moving at a human speed so the user can
follow along with the robot. Since there are multiple cameras connected to the robot, the end
user can see the images in real-time using the “-v’ command implemented into the software.
Robot will also constantly feed the end-user with the location it is proceeding towards and the
current location it is at as a message, such as “hallway” or “end-of hallway” or etcetera. End
user will also be able to see how long the robot is taking to analyze obstacles and to which
direction it will proceed next. Throughout qualitative testing, we are assuming that the end user
has intermediate knowledge of python commands so the software can be initiated. Since the
robot is equipped with machine learning, initiation of the software is all that is needed for the
robot to proceed.

While there is no particular graphic user interface implementation on the front end of the
software, qualitative usability testing is data will be collected. We are planning to get a minimum
of five participants to test our software extensively and gather data on how we can improve user
interaction between the software and the robot.

Currently, the robot has a command line based user interface and has constant display
messages to the user on the status of the robot. From the qualitative usability testing, we will
analyze the data and feedback we get from the user and improve our front-end application
accordingly. Having completed our alpha demonstration, we are looking to conduct extensive
usability testing from April 4th through April 9th so we have enough time to adjust our software.

5.0 Conclusion

The tests for this project are broken up into 3 parts: unit testing, integration testing, and usability
testing. Unit testing will be used to ensure the robot will be able to move functionally, and detect
obstacles. This will be done by checking the values given to the GPIO board by the pi for
movement, and checking the values of pixels given by the visual sensors on the front of the
robot. Integration testing will be used to ensure all the functions of the robot will work together to
achieve the overall goals of the robot. An example of this would be the robot detecting an
obstacle then based on the given information, move the robot to avoid it. Usability testing will be
done to ensure the command line functions to activate the robot will be easy to use by any
capstone project that may follow the completion of this one.

In order to ensure the software that was developed is functional and holds to the required
specifications, software testing is needed. Through this the team is able to properly keep track
of what needs to be fixed or updated prior to the project being considered finished and given to
the client.

