QLS
PN

Title: Software Design Document
Date: 04/01/22
Olympic Developers
Peter Galvan, Camden Hortline,
Jason Gaglione, and Collin Rampata
Sponsor: Sean H. Anthony

Mentor: Melissa D. Rose

Overview: In this deliverable, the team clearly lays out the software testing plan for the
HYPO2 management application. This will give information on Unit, Integration and

Usability testing the team will be deploying soon.

1. Introduction 3

2. Unit Testing
2.1 Unit Testing for Post Methods
2.2 Unit Testing for Get Methods
2.3 Unit Testing for Delete methods
2.4 Unit Testing for Intake form

hnh »nh = s & A

2.5 Unit Testing for Add Event Form

3. Integration Testing
3.1 Integration Testing for Frontend

3.2 Integration Testing for Backend

N SN Ot W

3.3 Integration Testing Diagram

4. Usability Testing
4.1 Usability Testing for Admin User
4.2 Usability Testing for Client User

o o 0

4.3 Usability Testing for Staff User

5. Conclusion 10

1. Introduction

HYPO2 has been extremely successful. The current business model still faces a few
challenges relating to client communication and scheduling. HYPO?2 staff communicate with
their customers through individual text messages and emails which often requires constant,
redundant work. For example, when a HYPO2 client wants to change a scheduled activity, they
first ask HYPO?2 if the change is possible, leading HYPO2 to cross reference data from all of the
camps, facilities, and services. If the change is approved, a master PDF must be manually
updated for the client and communicated with all HYPO?2 staff through email. If the change is
denied, there is a negotiation of other options and the process begins again. This could lead to
using valuable camp time to plan rather than to train. The variability of training camps alongside
the lack of a standard for automated communication has required HYPO2 employees to dedicate
time to company operations that could instead be devoted to camp performance.

This application is to improve on the existing workflow by using a software system that
allows employees to effectively communicate with clients, create training schedules, and receive
notifications of changes in scheduling or client requests. The solution is a web application that
offers a client portal allowing coaches to access and change their schedules with ease. This
works alongside an admin portal that allows HYPO2 staff to access and update training camp
information such as activities, costs, and team schedules. Any updates made within these portals
will be communicated automatically to respective recipients through digitized templates already
used by HYPO2. The Olympic Developer’s solution creates an opportunity for HYPO?2’s
employees to better provide real time schedules and up to date information to prospective clients
regarding their offered services.

Software testing is used to make sure the product works properly and accounts for all
user edge cases for error. This is needed because it allows the team to test whether the
application can break via user interaction. This is a necessary step to take before deploying the
product and handing it off to the client because it allows for a user-friendly experience and
minimal bug interference. Without software testing, bugs are more prone to seep into the
application. In order to have a successful testing plan, the team has broken up the testing into
three categories. Those categories include: unit testing, integration testing, and usability testing.
Unit testing is where the team will be testing individual functions to ensure that the functions
return proper values within the application. This allows these functions to be displayed or used
correctly throughout the application. Integration testing will be enlisted where the team takes all
of the modules and classifies them within their respective areas. Usability testing for this
application will be broken up into three other parts due to this application's complexity in having
three different types of users. These users consist of: admin, client, and staff. All of these users
will be given select tasks that are in relation to their specific user interaction and a rating system
of how easy the task was to complete. The team will go through each one of the categories of
different software testing areas in a way that outlines their particular interaction and usability
within this project.

2. Unit Testing

Unit testing is a type of software testing where code is sectioned into individual units to
be tested and validated. The purpose of unit testing is to ensure that individual components of an
application work properly and return the expected results. Testing the individual components of a
large application helps break down the location of bugs and see the output that each component
returns. Testing an application as a whole may take much more time to locate issues in code and
present less clarity in incorrect outputs.

2.1 Unit Testing for Post Methods

The web application will communicate with a database where all information inputted
into the website is stored. In order to do so, the server side of the application uses post methods
to send data to the MySQL database containing all information. Data sent from the web
application should be expected to send the correct information and properly store and update in
the database to match the data type of the field that is being populated (e.g., int, boolean, char).

2.2 Unit Testing for Get Methods

The web application will need to pull and display information from the database
containing the camp information. In order to do this, the use of get methods allows the web
application to retrieve information that has been stored in the database. To test that correct data is
being retrieved, camps created and stored in the database will be used to act as tests for the get
methods where the information will be pulled and displayed. The results from the web
application should match the fields in the database.

2.3 Unit Testing for Delete methods

The deletion method in the application will allow for unneeded or unwanted data to be
removed whether there is an error in the database or a camp that is no longer needed for
documentation purposes. Clients will be able to delete athletes from their rosters but will need to
make requests to delete calendar events, confirmation must be made by an authorized user type
being staff or admin. The staff will only be able to delete calendar events or confirm calendar
deletions from clients. Admin will be able to make any sort of deletions and confirm deletions
made by other users. The admin may delete athletes from a roster, calendar events, and camps.
When a deletion is made, the data will no longer exist and should not be present in the database.

2.4 Unit Testing for Intake form

The intake form is one of the most important tasks when starting a camp at HYPO2 and
will be used to send information to the database. The user will be shown a form to fill out with
required and optional fields. If a required field is not completed, then the user will be given a
message to complete the field and will not be able to submit the form. There will also be fields
when checked yes, which will reveal a text box that may ask for the number of an item needed or
extra comments. For text boxes that ask for a number, the user should only be able to enter a
number. Once the user fills all required fields, the user may submit the form and will be
presented a camp summary with all of the information that was filled out.

2.5 Unit Testing for Add Event Form

Clients will be able to make requests to add an event to their camp on any day and time
of day. The Admin will be able to confirm any add event request and the event will be sent to the
database and posted to the calendar that is viewable by the client who made the request, the
admin, and any staff that is involved in that event. Admin will also be able to add any event to
any camp, where the same procedure will follow as who can view the event in their calendar.
Any add event request that is rejected should not show in any calendar and should not be stored
in the database.

3. Integration Testing

3.1 Integration Testing for Frontend

Our application consists of three different portals based on account classification from
our sign-in page. After a specific user signs in to the application, they are displayed the
corresponding interface. For example, when an admin class user signs in they see and are only
able to interact with the admin interface. Since each classification has a different set of
permissions within their interface it is imperative that there is no ability to view a different
interface.

For example, if a client class user signs in and then changes the directory to an admin
interface page, the application should handle that accordingly. The interfaces fetch and display
data from our database, In order to maintain a fully functional application, the application needs
to handle errors in fetching and connecting with ease. Every case should have a corresponding
descriptive message that is portrayed to the user to ease any confusion about the application's
error.

In order to properly test the integration of the front-end the team will deploy the Nock
react library to mock HTTP requests to our application. In order to properly test each page the

team will test moving to every other page in the entire application’s repository to test if each
page handles classification properly.

Since the team deployed the Axios library for sending information from the frontend to
the backend. The team needs to test if the values being sent are staying consistent in not only
value but type given these values will be stored in the database. In order to test edge cases,
physical tests of all Axios statements in the front-end will be manually tested and logged into the
console with their value and type. As well as these values will be tested again within usability
testing to test real world applications of the functionality. Axios is also used to get information
back from the backend, to test appropriately, test cases will be manually stored in the database,
and expected outcomes will be created in a separate document and cross-referenced with the
values displayed to assure the proper outcome.

3.2 Integration Testing for Backend

Our Backend connects to our MySQL database and the team needs to make sure that the
API between our backend and database technologies is sending and receiving information
properly. The information stored in the database is the lifeblood of the application as all
operations are based off of it. In order to make sure the application works as intended the team
needs to verify that queries to the database are returning information that is correct.

Data that is being stored in the database will be manually created for edge cases, At test
creation the desired database state will also be created, Upon running the test, the desired
outcome will be referenced against the actual outcome to verify correctness. Data that is being
returned from the database will be created during the front-end testing alongside expected return
values and types for each field in the query. The queried data will be logged and checked against
the expected return to check the validity of the functionality.

3.3 Integration Testing Diagram

Axios Request

Axios Response

DB Query DB Query
Request Response

Figure 1.0 Integration Testing Diagram

Looking at the diagram, the tests are being evaluated at both ends of the application.
Expected outcomes are created at either end and are then being used to cross-reference with the
actual outcome. In the case of unexpected outcomes, the backend verifies values and types from
both the Axios Requests and DB responses to catch any mistake in the middle of the process.
This allows us as developers to easily pinpoint what side and operation the error resides in.

4. Usability Testing

Usability Testing is a software refinement process that centers around how a piece of
software interacts with the end user. This testing method is utilized to evaluate the user
friendliness of each software interface and assess the accessibility of each software functionality.
By conducting usability testing it allows for the overall user experience of the software to be
improved. A typical usability test begins with the developer devising a set of tasks for the end
user to perform. Each task is meant to test a specific software feature and after each one is
completed, the user will be asked to rate their experience. Feedback can be given in a variety of
ways including a five-point Likert Scale, questionnaire, or survey. This information is collected
and used to ameliorate the features that the end user found especially difficult to use. Part of this
testing process will also be used to refine each user interface. Discussions about the system's
overall user experience will take place in an effort to improve the software's usability.

First, the team needed to select candidates for the usability testing. Candidates would be
carefully considered in order to ensure a robust testing regime. Since HYPO2’s web management
portal has three different types of users, three separate focus groups were devised. The ‘Admin
User’ focus group only needed to consist of a single individual - our client, Sean Anthony. Since
he will be the web application's main user, the team wanted to tailor the admin user experience to

his liking. This gives the developers valuable insight into how exactly each software
functionality should be designed. For ‘Staff User’ candidates, our client will be sharing the web
application with HYPO2 staff members. Using actual employees as members of this focus group
will yield valuable feedback since these people have first-hand experience working at a training
facility. Furthermore, these people know precisely what features they need in the web application
to carry out their job effectively. For ‘Client User’ candidates, the team exercised more freedom
in who was selected. This is because HYPO?2 clients are comprised of professional and casual
athletes alike. Thus, the focus group will be made up mostly of pseudorandom individuals. The
reasoning behind a pseudorandom selection is to ensure that users in this focus group meet the
following criteria: candidates must have prior experience as an athlete. Using this approach
would yield candidates who are more likely to be familiar with the terminology present in the
software. This will allow the team to gather several unique viewpoints on the user experience of
HYPO2’s web management portal.

For HYPO2’s Web Management Portal, the team will be conducting Usability Tests using
a combination of the techniques outlined above. Each user will be asked to complete a set of
tasks that pertain to the type of account they are using (Client, Admin, Staff). For example, an
Admin user may be asked to build a schedule for a training camp. Or, a Client user may be asked
to request an event deletion. These tasks will be worded in a way that is purposely vague to
simulate the users doing these tasks on their own. At the end of each task, users will be asked to
read three statements. They will then rate how much they agree or disagree with each statement
using a five-point Likert scale. The development team will then examine the outcomes from each
focus group and decide how to refine the user experience moving forward. Included below is the
testing regime the development team will adhere to when conducting usability testing.

4.1 Usability Testing for Admin User

e List of Potential Admin User Tasks:

Sign in to the web management portal

Add a new user account

Delete an existing user account

Confirm a new training camp request

Decline a new training camp request

Build a schedule for a training camp

Delete an event in the schedule

Confirm a request for event deletion

Confirm a request for event addition
. View the training camp roster
. Update the price of Ferritin Iron Binding Capacity to $2000
. Change the price of Ferritin Iron Binding Capacity back to $38
. Archive a training camp
. Delete a training camp

A RSEPR RN ol o

—_
—_ O

—_— = =
N W N

e After each task, the Admin User will be asked to fill out the following survey:

Figure 2.0
1. [thought this [software feature] was easy to use.
Strongly . Strongly
Disagres Disagree | Neutral Agree Agres
1 2 3 4 5

2. Ithink that | would like to use this [software feature]

frequently.
Strongly . Strongly
Dicagree Disagree | Neutral Agree Agres
1 2 3 4 5

3. limagine that most people would learn to use this
[software feature] very quickly.

Strongly . Strongly
Blesgres Disagree | Neutral Agree Agres
1 2 3 4 5

4.2 Usability Testing for Client User

o List of Potential Client User Tasks:

Sign in to the web management portal

Create a training camp

View billing information

Add five people to the training camp roster
Delete three people from the roster

Request an event deletion from a confirmed camp

NSk Wb =

Request an event addition in a confirmed camp
8. Sign Out
e After each task, the Client User will be asked to fill out the following survey:

* See Figure 2.0 *

4.3 Usability Testing for Staff User

e List of Potential Staff User Tasks:
1. Sign in to the web management portal
2. View active training camps
e After each task, the Staff User will be asked to fill out the following survey:

10
* See Figure 2.0 *

5. Conclusion

Flagstaff has established global recognition as one of the epicenters of Olympic training.
The main goal for the Olympic Developers is to streamline HYPO2 operations while maintaining
the ease of use for HYPO2 clients. Previously, HYPO2 has had difficulty navigating the proper
use of digital scheduling and communication. This often led to redundant operations. However,
the new model hopes to eliminate the need for constant emailing to find proper times to set up
blocks within user schedules. The team will be testing this outcome over the remainder of the
capstone with the three testing methods above unit testing, integration testing, and usability
testing. Unit and integration testing will be used to make sure the application works with its
intended purpose and that no functions are giving incorrect input as well as no parts of the
applications are having trouble connecting to other modules in the system. The team hopes to
start incorporating these two testing methods as quickly as possible in the upcoming weeks.
Usability testing for the Olympic Developers is a big focal point expressed by our client. If users
feel that the application is too hard to use, too confusing, or takes more time than the alternative
solution in place then this application will need to be rethought with these concerns in mind.
Usability testing is already in the works based on the above plan. The Olympic Developers feel
optimistic about the future and the current state of the project to start finding bugs and getting
user feedback to turn this fully working application into a market-ready product for HYPO2.

