
REQUIREMENTS SPECIFICATION
Nov. 19, 2021
VERSION 1.2

SPONSOR: DR. VIACH�LAV FOFANOV
MENTOR: VOVA SARUTA

JOSEPH DOMABYL V ANDREW LIDDELL JUNJIAN YIN DANIEL DRAKE

Magisters

Accepted as baseline requirements for the project:

For the client: __ Date: __________________

For the team: __ Date: __________________

1

TABLE OF CONTENTS

1 - INTRODUCTION 3

2 - PROBLEM STATEMENT 4

3 - SOLUTION VISION 5

4 - PROJECT REQUIREMENTS 6
4.1 - Functional Requirements 7
4.2 - Performance Requirements 14
4.4 - Requirements Summary 16

5 - POTENTIAL RISKS 17
5.1 - Unreliable TA Form Information 17
5.2 - Bad account creation 17
5.3 - Inefficient GUI Workflow 18
5.4 - Summary 18

6 - PROJECT PLAN 19

7 - CONCLUSION 21

2

1 - INTRODUCTION
Working with and coordinating large groups of people can be a time consuming task. Consider a
scenario where you've been set to schedule potentially hundreds of di�erent people, all with di�erent
strengths, weaknesses, and availability. You've been working on this schedule for a couple of weeks only
to �nd that one of your team members can't make the 2pm timeslot on Friday they said they could.
You now have to �nd them a new spot in the schedule they can attend, but you will have to factor in
everyone else’s schedule before changing it. Moving one person might require that you move three
more people down the line. This has the potential to become destructive for your work�ow and is what
university departments all around the nation deal with on a regular basis. This is a persistent issue that
plagues these departments semester after semester, particularly the scheduling of teaching assistants
(TA’s) and graduate teaching assistants (GTA’s) for lab positions. For the rest of this document we will
be referring to both TA’s and GTA’s simply as TA’s unless speci�ed otherwise.

The current work�ow used by our client, Dr. Viacheslav Fofanov, is to use an Excel spreadsheet and
manually assign these TA’s to where they need to be. Dr. Fofanov is the associate director for the
School of Informatics, Computing, and Cyber Systems (SICCS) at Northern Arizona University
(NAU). Speci�cally, Dr. Fofanov coordinates GTA’s to teach labs and TA’s to assist their graduate
counterparts. Dr. Fofanov currently spends an estimated 20-30 hours creating the schedule but
emphasized that this number is largely dependent on a multitude of other variables. This might
include elements such as how long it takes for students to respond with their personal schedules, how
long it takes to create the table depending on volume, or how long it takes to cross-reference time slots
in order to ensure an accurate schedule. Perhaps one of the most important aspects of this problem is
that it is persistent and has the potential to be troublesome throughout each semester, not just at the
beginning. That is, a TA might unexpectedly leave their position and their spot would need to be �lled.
However, the problem goes deeper than the brief explanation above, which we will describe in further
detail below.

3

2 - PROBLEM STATEMENT
The current process for assigning TA’s is as follows; our client will �rst gather the information of the
newly hired TA’s and assess their abilities and quali�cations. Depending on their experience, they are
assigned to a speci�c lab with their scheduling constraints in mind. This means Dr. Fofanov will design
the new TA schedule with all of their constraints in mind. To o�cially record this, the schedule is
manually built using an Excel spreadsheet. Each of the TA’s are manually entered and assigned to their
labs to lecture and/or grade for. The �gure below describes the current work�ow of our client.

Figure 1. Client Work�ow

4

Besides the time consumption, the issues with this current process truly expose themselves once there is
a change in the schedule. If a TA is terminated, has a schedule discrepancy, or wishes to switch classes,
it has the potential to create a series of problems:

● Butter�y e�ect of several people potentially having schedule con�icts from a single change
● Constant reevaluation of TA’s quali�cations and schedules
● Some TA’s may be forced out of a class against their will
● Time consuming manually reentering individuals into the spreadsheet
● Peer pressure between TA’s for scheduling advantages

To solve the time consumption of the butter�y e�ect, reevaluation, and the manual input of TA’s, we
will design an optimization algorithm that will automatically sort the TA’s depending on their
quali�cations and availability constraints provided. We will create an interface where the lab organizer
can easily see all possible changes and implement the best schedule for all of the TA’s at the click of a
few buttons. From the possibilities shown to the lab organizer, they can negotiate schedules with the
students as soon as possible. As a stretch goal, there will be an option to request swaps between the
TA’s if one wants another’s time slot. The identities would be anonymized to prevent any sort of
potential peer pressure situations.

3 - SOLUTION VISION
To narrow down the solution, the project will be built as a web application holding several modules.
We will host the application via an AWS server, which will hold a database to store the TA information,
a web framework environment to ensure the ease of operation and manipulation of the database, and
an optimization algorithm to automatically sort the database when any changes are made by the front
end. The team has decided upon these technologies to implement our solution:

● AWS web hosting service, Lightsail
○ This will be the machine that hosts our website, allowing the application to be accessed

any time
○ Comes with security guarantees provided by Amazon

● Django Web Framework
○ Will be running the main GUI functionality for our application
○ Will display all TA information and allow for responsive scheduling changes

5

○ Comes with out-of-the-box security features to ensure information protection
○ Comes prepackaged with many tools to speed the development process

● Optimization Algorithm
○ Will automatically organize the TA’s into their classes
○ A table of scheduling information will determine how the algorithm places the TA’s

● Admission from Django forms
○ “Forms” will be a functionality automatically provided by Django
○ Will allow the TA’s to quickly input their schedules, quali�cations, and account

information for the database

With these technologies, we will be able to build a fantastic solution for most scheduling issues. It will
automate the manual input and evaluation of all TA’s and their attributes. Seeing the possible schedule
arrangements using the Django web app will allow for great communication between the lab organizer
and the TA’s in order to account for unforeseen changes in the schedule. Not to mention the stability,
reliability, and ease of access to the application, The Django web application will provide numerous
safety features to ensure the privacy of its users and their information. The concept of this solution is
applicable to many other issues related to scheduling, and could solve the scheduling problems of
institutions world-wide.

4 - PROJECT REQUIREMENTS
For this project to be successful, the team has developed a set of domain-level requirements that lay out
the features of the web application. In this next section, we will be discussing all of the known
requirements, then breaking them down into two subsections: functional requirements and
nonfunctional requirements. Each requirement will be presented hierarchically, beginning with the
domain-level requirements and breaking them down into smaller, more detailed representations. Our
application will supply the following domain-level requirements:

● Security that authenticates users and is accessible by di�erent permissions
● A GUI for lab organizers and TA’s
● Organize, manage, and schedule TA’s for lab placement

Based on these domain-level requirements, we can now present more detail regarding functional and
nonfunctional requirements.

6

4.1 - Functional Requirements

The application has a set of functional requirements to operate from. This section will outline the
essential functions of the application in order to be considered complete. We will be examining the list
below:

● User-based authentication and permissions
○ Permissions of TA’s, GTA’s, and lab organizers
○ Information security

● TA scheduling optimization
○ Scheduling based on quali�cation
○ Lab organizer customization
○ Distinction between TA’s (GTA vs. TA, grader vs. lecturer, etc.)
○ Speed

● GUI
○ For TA’s and lab coordinators to interact with
○ Renders data into a visual representation

● Data management system
○ Provide data to the GUI
○ Store information regarding TA’s, semesters, and lab organizers
○ Persistent state

● Account con�guration and setup
○ Lab organizer account creation
○ TA account creation
○ Access to the application

All �ve of these functional requirements will interact with each other. For example, the optimization
algorithm will couple with the Redis database in order to visually represent the data in the GUI. Now
that we have de�ned our functional requirements, we can examine each on a deeper level.

7

4.1.1 - User-based Authentication and Permissions

Users of the application will �rst be authenticated by the system and subsequently given di�erent
permissions based on their account status. The importance of strict roles and permissions are to ensure
security, con�dentiality, and to ensure the equal satisfaction of all TA’s that are scheduled. The
application will complete most of the scheduling work for the lab organizer while also allowing the
organizer to make any changes necessary to �t the current context. The TA’s will not have any direct
permissions in terms of schedule changes, but will be allowed to see the entire schedule. Listed below
are all the requirements for user-based authentication and permissions:

● Authentication
○ Handled by the Django web framework

The system will examine a �ag set within the account details and determine whether
the user is considered a lab organizer or a TA.

● Lab organizer account type
○ Considered a “superuser” by the system
○ Able to make changes to the current schedule:

■ Move TA’s, regardless of quali�cation
■ “Swap” TA’s

Swaps refer to switching time frames between two TA’s that are both able to �t
with their respective time constraints. This will be used if two TA’s wish to
switch shifts for both of their convenience.

■ View potential swaps or schedule changes when looking at the entire schedule
○ Able to edit weights of lab quali�cations (see section 4.1.2)

● TA account type
○ Allowed to view the current schedule for classes o�ered during the semester
○ Unable to make direct schedule edits
○ Able to request swaps by the lab organizer. This ability will be anonymized between

two TA’s (see section 4.3.3)
○ Will be �agged as either a TA or a GTA, as a grader or a lecturer, and whether or not

they have an existing contract with NAU (see section 4.1.2)

8

4.1.2 - Optimization Algorithm

The application will provide a way of organizing and placing TA's into their quali�ed positions. In the
backend of the system will be an optimization algorithm that will contextually decide which TA gets
assigned to which lab. This algorithm will contain a generalized formula for scheduling TA’s using a
number-based scoring system. All TA’s hired for a speci�c semester will be evaluated through each
semester and assigned a score based on their skill quali�cation. The TA with the highest score for a
certain lab will be assigned to that lab.

● General constraints
○ TA’s not available during a speci�c time period will not be assigned to that time frame

If a TA is only a grader, thus they are not required to be physically present in a lab, their
time constraints will be ignored.

○ TA’s that score below a threshold designated by the lab organizer for a speci�c lab will
not be assigned to that lab.

● Custom constraints/criteria and weight
○ When a lab organizer creates a lab object in the system, they will be asked to edit any

existing constraints.
○ Each lab will, by default, utilize the generalized optimization algorithm.
○ Constraints, criteria, and criteria weight will be editable by the lab organizer to

accommodate for speci�c lab conditions.
■ For example, if a lab organizer is responsible for sta�ng a lab that requires an

above-average understanding of arti�cial intelligence, they will have the ability
to weigh that criteria accordingly.

● TA scores
○ TA's will be assigned a score throughout the algorithm that will place them in their

most quali�ed labs
○ The score will initially start at 0 and be incremented/decremented according to the

de�ned lab organizer criteria
The TA with the highest score will be presented to the lab organizer as the best option.
The lab organizer will be able to edit any TA assignment as they see �t (see section
4.1.1)

● Priority
○ The algorithm will �rst assign TA's to labs that are more di�cult to sta� rather than

over�tting quali�ed TA's.

9

■ For instance, labs that are expected to have less quali�ed TA's will be assigned
�rst such that easier-to-sta� labs are not �lled with overquali�ed TA's.

○ Lab organizers will have the option of assigning a “priority score” to an individual lab.
○ The lab with the highest priority will be sta�ed �rst.
○ The algorithm will prioritize TA's based on their contract status with NAU.

■ For instance, a TA that has an existing contract with NAU must be assigned a
lab. A TA that does not have a contract does not necessarily need to be assigned
a lab.

● Speed
○ The optimization algorithm will take no longer than 15 seconds to organize less than

100 TA’s for a given semester

4.1.3 - GUI

The application will feature a GUI that will allow users to visualize TA scheduling as well as employ a
set of buttons that provide a series of di�erent functions. Both user account-types will be presented
with a di�erent version of the GUI upon login. Each user will be shown pages based on the work they
are trying to accomplish.

● Login GUI
○ Will act as the homepage of the application
○ Will ask the user for their email and password
○ Will allow the creation of new lab organizer accounts

● GUI for Lab Coordinator
○ Scheduling page

■ Option to swap two TA’s
■ Option to remove a TA
■ Course list overview of the selected semester
■ History of changes that have been made to the schedule
■ List of contracted TAs and uncontracted TA’s

○ Page of TA’s
■ Lists information about TA’s

● Previously taught courses
● Evaluation from previous semesters

■ Current status of a TA account
● Uncreated

10

If a TA has not begun the creation of their account but an email has
been sent, their status will be considered “uncreated”.

● Missing information
● Complete

If a TA account contains all necessary information, their account will
be considered “complete”.

● GUI for TA’s
○ View current schedule
○ Update personal information
○ Update course catalog
○ Update skills and quali�cations
○ Update availability

● Speed
○ Either version of the GUI will take no longer than 15 seconds to fully load after a user

logs in

4.1.4 - Data Management System

The application will be using a database package that will store three primary sets of data. The �rst will
be referred to as the “semester pool”, the second as the “TA pool”, and the third as the “lab organizer
pool”. Each lab organizer will be allocated a semester pool for each semester they are responsible for
managing. All pools will be accessible by the GUI in order to provide a visual representation of the data
for the lab organizers and TA’s. The following are the requirements of the data management system:

● Semester pools
○ Acts as a container for individual lab objects.
○ Each lab object will represent a single lab that needs to be sta�ed by the lab organizer

for that semester.
● TA pool

○ Acts as a container for TA objects
○ Each TA object will represent a single TA.

● Lab organizer pool
○ Acts as a container for lab organizer objects
○ Lab organizer objects will contain all information regarding a single lab organizer.

● Maintain previous semester information

11

○ The database will maintain lab information for up to 2 academic years, or 4 semesters,
as long as the lab is not being o�ered

○ In the event that a lab is not being o�ered for longer than 2 academic years, the data
will be removed from the system. If the lab is then o�ered after this time period, a lab
organizer will be required to create a new lab object with updated data.

● Persistent data state
○ The data management system will provide a method of persistence by storing data on

the local disk of the hosting machine. The reason that this is mentioned as a
requirement is due to the team’s decision to use the database framework, Redis. As
Redis is an in-memory cache based system, data persistence must be provided as its
own function.

To better visualize the data management system, the team has provided Figure 2 below.

Figure 2. Data Management System

12

4.1.5 - Account Configuration and Setup

There will be two primary aspects of account con�guration and setup. First, the lab organizer will be
able to create an account for themselves to be able to moderate their labs. Second, each TA will be able
to access the application in order to provide their personal data, allowing them to be scheduled within
the system.

● Lab organizer account
○ Lab organizer accounts will have higher privileges than their TA counterparts
○ Lab organizers will create their own accounts directly from the login page of the

application
○ Lab organizers will be required to provide a name, email, and password upon creation
○ Lab organizers will be able to edit the above information as necessary

● TA account
○ TA’s will only be able to create an account at the discretion of a lab organizer
○ Lab organizers will have the ability to send an email directly to TA’s, where the TA will

be given a link to the application to create their account.
○ TA’s will be required to provide their name, email, a password, and their student IDs.

Further, they will provide information relevant to the semester they are going to be
working: time availability, quali�cations, and whether or not they have an existing
contract with NAU.

○ TA’s will be able to edit the above information as necessary
○ After a TA has an account, they will then be able to login from the homepage of the

application

4.1.6 - Summary

The functional requirements are necessary to provide lab organizers the ability to schedule and manage
TA’s and TA’s the ability to be able to view the labs they are assigned to. In summary,

● Users will be authenticated and given di�erent permissions based on their account status
● TA’s will be organized and scheduled via a score-based optimization system
● Lab organizers will be presented with a GUI to visually manage their accounts and schedule

TA’s. TA’s will be presented with a GUI that outlines the labs they are responsible for
● Data will be managed and stored within the server that hosts the application
● Lab organizers will create their own accounts and be given the ability to establish TA accounts

13

4.2 - Performance Requirements

The web application will require a set of nonfunctional, or “performance” requirements in order to
operate e�ciently. These requirements outline how the application will perform within the entire
system and are used to outline the entire process. We will be examining:

● Security
● Professional look-and-feel
● Modularity
● Sensitive data anonymization

First, we will be discussing security, which will be required to protect sensitive user information. Then,
we will be looking at a professional look-and-feel. This requirement is necessary to provide an easily
accessible and understandable environment for the user. Finally, we will explore modularity, which is
required to ensure the extended lifespan of the application as well as allow the lab organizer more
customization. Now, we can examine each requirement in greater detail, beginning with security.

4.2.1 - Security

The security of the web application is an extremely important non-functional requirement that will
require a lot of attention from the developers. The list below will be our standards for the security of
the web application:

● Protection against cross-site scripting
● Protection against cross-site request forgery
● Protection against SQL injection
● Protections against Clickjacking
● Protection against host-header violation
● Encryption through HTTPS

In order to ensure our web application is encrypted, we will be using “certbot” to secure the website
with HTTPS. When sending out links for users to create their accounts, each will be personalized.
Only one account can be created with one link at a time. If the wrong person gains access to the link,
the issue will be easily �xed. The lab organizer webpage will be only accessible to them and will be only
accessible by their credentials. As stated above, TA’s will only be able to read the whole schedule
without making any direct changes to it.

14

The backend of the system will be a Redis database, which will be rendered and encapsulated by the
Django web app. The only people with access to the database will be the developers, or the client will
be allowed to have access to it if they so choose. When a user is created, their password will
automatically be hashed and stored in the system.

4.2.2 - Look-and-Feel

The application will be used both for work and study. The team anticipates that lab organizers will be
the primary users, thus spending the most amount of time on the website. The TA’s will be secondary
users, only using the application infrequently to check their schedules and request changes. However,
both parties will be using the application and as such, the team will be providing a look-and-feel that
promotes accessibility and extended periods of time using the application.

● Accessibility via look-and-feel
○ The application will have self describing GUI elements. For example, the login page

will explicitly inform the user where to enter their username and password as well as
feature a “login” button. Further, buttons will be labeled such that their functionality
is evident without the user having to read any user manuals.

● Extended work periods
○ The main theme will be of cool colors with low saturation to promote less strain on the

eyes
○ The application will be as “clutter free” as possible. By this, we mean that there will be

no extraneous UI elements that o�er little or no purpose. For example, there will be no
sound e�ects attached to the website.

4.2.3 - Modularity

The application requires modularity for the purpose of extending its total lifespan. Inevitably, the team
will eventually step away from the project. As such, the components of the system will be modular and
serviceable by the owner of the hosting machine. The individual components will be as independent
from each other as possible to allow the owner to easily replace or modify them.

● Optimization algorithm
○ The optimization algorithm will reside in it’s own dedicated �le on the server. Any

other components that interact with it will be able to adapt to any changes made to the
�le. The owner will have full control over the content of the �le.

15

● HTML �les via Django
○ The HTML �les will be dependent on Django to properly render them but will be

written in a modular fashion such that they can be moved/directed to any other
existing �le on the server.

● Redis functions
○ Redis functions will be written so that they can be used wherever they are required. For

example, a function that locates the speci�c ID of a TA will be accessible by any �le
designated to display that ID.

4.2.4 - Sensitive Data Anonymization

The client has requested the ability for TA’s to request “swaps” between their already-assigned lab
positions. This means that two TA’s will be able to trade positions that they are both quali�ed for. The
client has also requested that TA’s remain anonymous from each other, which will require the team to
hide identities when TA’s are viewing their schedules via our application.

4.2.5 - Summary

In summary, elements of each performance requirement will either be indirectly or directly
implemented via a series of existing technology, planning, and proper design. The application will be
secure, protected from SQL injection, clickjacking, cross-site scripting, and more. The application will
be designed to be easily understandable by a new user. The system will remain modular such that when
the team moves on from the project, it will be serviceable and customizable by the owner of the hosting
machine. Finally, sensitive TA data will be kept anonymous from other TA’s.

4.4 - Requirements Summary

All requirements have been thoroughly planned, thought out, and a design has been decided on. While
the team understands that requirements evolve as the project matures, we are con�dent that we will be
able to remain agile and quickly adapt to unforeseen circumstances. With the design plan in place, the
team will be able to implement each functional, nonfunctional, and environmental requirement at a
speed that complies with the limited timeframe of the capstone experience.

16

5 - POTENTIAL RISKS
After or during development of the project, there will be inevitable problems the client and team will
encounter. These issues could be caused by a service or user not acting as intended by the developers. In
this section, the team will list out several potential mishaps, while also o�ering potential mitigations for
each of them.

5.1 - Unreliable TA Form Information

When potential employees register an account to the web application, the lab organizer must assume
that the TA’s will provide correct information. This will not always be the case. They may make a
mistake in their schedule constraints, say they have experience in classes that they don't, or they can
give an inaccurate evaluation on their pro�ciency in assisting for a class. This will a�ect how the
algorithm scores and places them in the schedule, which could create a butter�y e�ect for other
students. The client wants large changes to the schedule to happen as close to the beginning of the
semester as possible in order to avoid changing TA’s that are already well established with their labs.

To mitigate the issue, the application will have to allow for the changing of constraints in a convenient
fashion. The option to change speci�c constraints should be available when the lab organizer clicks on
the speci�c TA. The client would also be encouraged to double check with their TA’s to make sure
their schedule constraints are sound. In order to mitigate incorrect pro�ciency information, the lab
organizer should evaluate the TA’s at the beginning of the semester to make sure they are well suited to
assist with their class. Any further changes to constraints will a�ect the entire schedule, so it is
encouraged that those types of changes are completed as soon as possible.

5.2 - Bad account creation

Another issue with account creation is ensuring that all accounts created are valid, and that there are no
duplicates. There is a possibility that the wrong person may receive the wrong link to register. When
this person registers, they will be injected into the database along with all of their personal information.
If this is wrong, it could potentially clutter the database with people that aren’t employed or have the
wrong schedule constraints.

In order to negate this, the team has decided that only one account will be allowed creation per link
sent by email. If there is a bad entry in the database, the intended recipient will likely reach out to the

17

lab organizer to �x the issue since they will be unable to register. The bad recipient will be removed in
place of the intended one. This will also completely �x the issue of potential exploits of putting
multiple entries of one person into the database.

5.3 - Inefficient GUI Workflow

There are a lot of design requests for this web application, along with many visual elements to better
understand the bigger picture of the scheduling process. These will be great tools for the lab organizer;
however, the team is concerned that the great number of design choices may clutter the screen, and
result in a GUI that may be di�cult for some lab organizers to learn properly. For a stretch goal, the
team wishes to allow many users to use this tool, so it should be as user-friendly as possible.

To mitigate this potential issue, a tabbed environment may be the best solution to simplify the
work�ow of the software. Certain aspects of the dashboard that are similar will be placed into a
separate tab (Ex: the schedule table and potential changes will go in one tab, while change history and
speci�c TA information will go in a di�erent tab). The team is not sure that this will be necessary;
however if this issue presents itself, we will have a tabbed environment prepared for deployment.

5.4 - Summary

The above mitigations will not be a silver bullet to the issues, but they will decrease the chance of
signi�cantly larger issues presenting themselves in the future for the lab organizer. Unreliable TA
evaluation, bad account creation, and bad GUI work�ow are all issues with medium severity, but there
exist solutions that the team can assist with to ensure the satisfaction of the client.

18

6 - PROJECT PLAN
This section will identify the current plan and outline major milestones for the remainder of the
project. Below are two Gantt charts, one that identi�es the Fall 2021 semester and one that identi�es
the Spring 2022 semester.

Figure 3. Fall 2021 Semester

Looking above at Figure 2, at the time of writing this document, we are in week 13 of the semester. In
previous weeks we have completed our Team Standards document, our Team Inventory document,
and our Technological Feasibility document. We have begun prototyping the Django environment and
completed our Project Introduction. For the rest of this semester, our major milestones will be:

● Identifying any remaining project requirements before the end of week 15
○ Involves the requirements being con�rmed and accepted by the client

19

● Prototyping the application, ensuring that each requirement is technically feasible by the end
of week 16

○ We will be establishing a connection between Django and Redis
○ We will create a database environment that is capable of reading/writing data provided

by the client
○ We will create the �rst iteration of the optimization algorithm

Figure 4. Spring 2022 Semester

Next semester, our primary focus will be programming the �nal application. We will periodically
develop Design Review assignments as well as writing two more major documents, Software Design
and the Software Testing Plan. Our major milestones for this semester will be:

● O�cially hosting the application via AWS
● Fully integrating the prototype into the �nal product

20

● Completing a checklist of all requirements outlined above
● Delivering the �nal product

7 - CONCLUSION
In conclusion, this project is designed to aid Doctor Fofanov in the scheduling and management of
TA’s. The problem lies in the time consuming nature of manually scheduling large teams. Our client
currently manages TA’s using an Excel spreadsheet, which takes him roughly 30-40 hours per semester;
however, the total time required is dependent on a number of di�erent variables and has the potential
to increase inde�nitely. Our proposed solution will be creating a web application that allows users to
create, edit, and automatically sort TA schedules for a given semester. Users will be presented with a
visual representation of the data they have created, access the system at any time, and di�erent
con�guration features to better suit their needs. By establishing the sets of requirements outlined
above, the team is con�dent in their research and understanding of the solution vision. We are excited
to be working on this project and are passionate about solving this issue not only for our client, but for
other organizations with similar problems.

21

