
TECH FEASIBILITY
Nov. 4, 2021
SPONSOR: DR. VIACH�LAV FOFANOV
MENTOR: VOVA SARUTA

JOSEPH DOMABYL V ANDREW LIDDELL JUNJIAN YIN DANIEL DRAKE

Magisters

1

TABLE OF CONTENTS

1 - INTRODUCTION 3

2 - TECHNOLOGICAL CHALLENG� 4
2.1 - Web Framework 4
2.2 - Graphical Interface 5
2.3 - Data Storage 5
2.4 - Admission 5
2.5 - Web Hosting Service 5
2.6 - Security & Permissions 5
2.7 - Penalty System 6
2.8 - Summary 6

3 - TECHNOLOGY ANALYSIS 6
3.1 - Web Framework 6
3.2 - Data Storage 11
3.3 - Admission 16
3.4 - Web Servicing 20
3.5 - Penalty System 24

4 - TECHNOLOGY INTEGRATION 27

5 - CONCLUSION 29

2

1 - INTRODUCTION
Scheduling large groups of people can be a challenging task. Consider a scenario where you’ve spent
weeks, if not months, crafting the perfect schedule for potentially hundreds of di�erent people. You’ve
paid attention to their strengths, their weaknesses, their weekly availability, etc. Then, you get a call
from one of your TA’s telling you that they cannot make the 2 pm timeslot on Friday that they said
they could. You now need to go in, manually move them around, and �nd them a new spot. However,
by doing this, you may now need to move �fteen other people just to make the schedule work. This is a
persistent issue that plagues many university departments semester after semester, particularly
regarding the scheduling of teaching assistants (TAs) and graduate teaching assistants (GTAs) for lab
positions. For the rest of this document, we will be referring to both TAs and GTAs simply as TAs
unless speci�ed otherwise.

The current solution used by our client, Dr. Viacheslav Fofanov, is to use an Excel spreadsheet and
manually assign these TAs to where they need to be. Dr. Fofanov is the associate director for the School
of Informatics, Computing, and Cyber Systems (SICCS) at Northern Arizona University (NAU).
Speci�cally, Dr. Fofanov coordinates GTAs to teach labs and TAs to assist their graduate counterparts.
Dr. Fofanov currently spends an estimated 20-30 hours creating the schedule but emphasized that this
number is largely dependent on a multitude of other variables. This might include elements such as
how long it takes for students to respond with their personal schedules, how long it takes to create the
table depending on the number of TAs and the number of labs, or how long it takes to cross-reference
Excel cells in order to ensure an accurate schedule. Perhaps one of the most important aspects of this
problem is that it is persistent and has the potential to be troublesome throughout each semester, not
just at the beginning. That is, a TA might unexpectedly leave their position and their spot would need
to be �lled.

The team’s aim is to provide a comfortable working environment in the form of a web application that
automates the scheduling and management of TAs. The team’s primary focuses include:

● GUI: An intuitive and functionally stable environment that renders all the information
necessary for lab organizers to view the current standing of TAs in the system in an appealing
format such as a calendar view.

● Automation: Provide an organized display list of potential TA assignments for an entire lab
o�ering.

3

● Optimization: Optimize the placement of TAs by assessing their quali�cations, time
availability, and student feedback to ensure they are assigned to their most appropriate spots.

Throughout the rest of this document, the team will be providing information regarding the
technological feasibility of this solution. This document will discuss technological challenges, an
analysis of each proposed technology, possible alternatives, and how well the technology can be
integrated.

2 - TECHNOLOGICAL CHALLENG�
For the success of the application, the Magisters will need to overcome a set of technical challenges.
The team has developed a list of seven di�erent problems that they will encounter in the foreseeable
future. In this section, the document will begin with a brief description of each potential problem and
will later delve deeper into the “Technological Analysis” section.

2.1 - Web Framework

The team will need a web framework that will provide fast response times, security, and a foundation
for every other design decision made. The chosen database framework will need to integrate well with
the web framework, as it must run e�ciently on the hosting server. This will need to be one of the �rst
decisions that the team makes.

2.2 - Graphical Interface

One of the most important problems conveyed to the team by Dr. Fofanov is the graphical
representation of the system. The team will need to provide a reactive and visually appealing interface
with great emphasis on the design of the dashboard and calendar. The backend of the interface must be
modi�able so that further design decisions can be swiftly integrated.

2.3 - Data Storage

The team will need a fast and lightweight database system capable of servicing a single department. The
current plan is to use one database per department, so the team will need no more than a couple
thousand entries in the database. The database will need to store enough information regarding each
TA, including name, student ID, and availability. The database will also need to integrate with the
chosen web framework.

4

2.4 - Admission

The team needs to provide a platform for account creation that integrates well with the database. The
team’s options include either scraping data from a Google Form or have the Lab Organizer send
generated links to the TAs they wish to schedule. Following the latter option will require the TAs to
create their own accounts.

2.5 - Web Hosting Service

The web application will need a stable server to run on. It must be a lightweight and secure server
capable of e�ciently responding to the users when requested.

2.6 - Security & Permissions

The application will need to provide secure user authentication in the form of a “login” to our
application. Providing a format for secure passwords and subsequently user-based permissions is of
great importance. For example, users of the “TA'' role should not be able to modify their own or
anyone else’s schedule. This implies TA’s should not be able to log in at the “Lab Organizer” level.

2.7 - Penalty System

To aid in the process of optimization, the team will need to develop a constraint system to be applied to
TAs within the database. For example, we would not want a TA that is unavailable on Fridays to be
scheduled on that day. In this case, we will supply a negative “penalty” to them, thus eliminating the
possibility of a Friday scheduling. Furthermore, if a TA has not TA’d for a speci�c lab before, they may
be given less priority than a TA that has, thus a di�erent penalty value.

2.8 - Summary

The above has de�ned seven di�erent technological challenges that the team needs to face. After
examining these challenges at a deeper level, the team has compiled a list of frameworks and products
that might act as possible solutions.

5

3 - TECHNOLOGY ANALYSIS
In order for us to truly understand the problem and be able to develop a clean and high-quality
solution, we are deeply investigating each individual challenge. Throughout this section, we are
outlining each technological challenge, providing potential candidate solutions, and explaining our
reasoning for our decisions. It should be noted that we have combined technological challenges that
overlap with each other. For example, “security and permissions” will be discussed within both sections
3.1 and 3.4, web frameworks and web servicing respectively.

To better understand our decision-making process, we have created a metric system for each
technological challenge. Each criterion will be de�ned in each subsection relevant to the solution we
are looking for and will be placed on a scale of one to �ve, except in the case of web frameworks, which
we will elaborate upon further.. Each subsection will include a summary in which we will examine the
ranking of each alternative and use these metrics to de�ne our chosen solution.

3.1 - Web Framework

One of the key requirements for this project identi�ed by our client is a re�ned dashboard and UI of
the web application. This is what our customers/clients will be facing consistently throughout all of
the deployment. We want to choose a framework that will nicely �t all categories needed to make an
easy and e�cient web interface to work with. It must look attractive, run fast and be secure enough so
that all users’ sensitive information stays con�dential. So, to choose a valid web framework, the team
had to examine:

● Performance: When looking at performance, we will consider the speed, e�ciency, and
responsiveness of the front-end framework. We will want the user to interact with the website
with low waiting times while also maintaining a professional and re�ned appearance. However,
this isn’t a criterion of great relevance considering the application’s small scale. Therefore, we
will weigh the score of this criterion out of 3.

● Applicable Security: We will want to protect sensitive information with potentially large
numbers of technologically savvy users. We will be examining what security solutions each
framework will have out of the box. This criterion will be of great importance to us, so we will
be weighing this score out of 7.

● Development Flow: When looking at the development �ow, the team will want
documentation to be readily available and the implementation process to be as simple as
possible. This will allow for timely development in the context of a time-limited capstone class,

6

but also greater future development possibility. The development speed and applicability of
the web framework is essential to ensure that the product is ready to deploy as soon as possible.
It will be weighted out of 7 as well.

With the above criterion in mind, the team narrowed the options to Angular, Vuejs, and Django. Next,
the document will provide an in-depth analysis of each framework, beginning with Django.

3.1.1 - Django

Django was one of the �rst options considered by our web tech, Andrew. After dabbling within the
framework on his own time, he remarked that this framework will nicely �t our needs in many aspects.
Many of the components for this application will come out of the box when we use Django and will be
able to utilize many of the built-in features without it being considered bloated. Django is a free and
open-source web framework developed by the Django Foundation. It was released in 2005 and has
steadily grown in popularity since then. To this day it remains one of the most popular frameworks
due to its great scalability and “batteries included” philosophy.1

To analyze Django, we will �rst examine its performance. Django’s performance is fairly lackluster.2

As it is commonly known, Python is certainly not the fastest or the most optimized language. Django’s
design is extremely monolithic and tightly coupled, which means that “fat”, or “bloat”, cannot be
trimmed o�. This is a considerably large framework and may be a little large for this project. However,
the ability to design good code architecture and properly optimize the program may o�set these
drawbacks. We should also note that we would be utilizing the majority of Django’s features, which
may counteract the issue of bloat in the �rst place. Overall, 1/3 will be our designated score for the
framework’s performance.

The next criterion to examine would be applicable security. In terms of security, Django is absolutely
packed with features out of the box. These include protection against SQL Injections, CSRF,
Clickjacking SSL, HTTPS, and Host header validation as well as many others. In terms of security,
Django is certainly the most prepared and will accomplish many of the security headaches web
developers have to hassle with without much con�guration. Overall a score of 7/7 will be given to the
security criterion of Django.

2 https://www.netguru.com/blog/django-pros-and-cons

1 https://www.benchmarkit.solutions/lets-understand-the-pros-and-cons-of-using-django/

7

https://www.netguru.com/blog/django-pros-and-cons
https://www.benchmarkit.solutions/lets-understand-the-pros-and-cons-of-using-django/

Lastly for this framework, we will look at its development �ow. Django is extremely well documented
with a bustling community of online users.3 Further, with Django’s aforementioned “batteries
included” philosophy, a huge load of the work is completed when you set up an environment. With a
built-in user/superuser system along with an easily manipulated component module, two major
aspects of our project will be done. Also, having libraries nicely integrated with whatever backend
database we use will make it greatly adaptable. The GUI development contains heritability and HTML
injections, which make the process of designing the interface lightning-fast. A score of 7/7 will be
given to Django for its development �ow.

3.1.2 - Angular

We have directed our research to look at purely front-end frameworks that are extremely popular and
are widely used in the industry. Considering the other choices, we decided to take a look at Angular.
Angular is a massive open-source web framework developed by Google. It was initially released in 2016
and has grown to be the second most popular web framework in 2018. The framework features
TypeScript-based development and is designed for major enterprises to have an extremely dynamic
front-end web application. We considered this framework due to its great ability to make interactive
and nice-looking web applications.

We will �rst look at how well Angular scores in terms of performance. As stated above, Angular is a
massive framework designed for enterprise applications. This could cause a huge amount of lag for
smaller projects. However, if the SBA is relatively simple, this shouldn’t be a problem. Angular features
asynchronous programming due to it utilizing RxJS as its major development language.4 This can be
utilized as long as the developer knows how to properly use it. Lastly, it features hierarchical
dependency injection, which allows for the dependencies to run in parallel, greatly increasing
performance. Angular will receive a 2/3 for its score in terms of performance.

Next, we will look at Angular’s applicable security attributes. Angular’s documentation does have a
few methods for implementing security features such as cross-site scripting and sanitization as well as
cross-site request forgery. However, the security is not as conveniently included out of the box. Security
measures must be implemented by the developers themselves. The documentation for security is also
signi�cantly less than that of the other frameworks we have glanced over. The security of Angular is
certainly decent, but not the best. This means we will score Angular’s security attributes a 5/7.

4 https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-angular-development/

3 https://hackr.io/blog/what-is-django-advantages-and-disadvantages-of-using-django

8

https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-angular-development/
https://hackr.io/blog/what-is-django-advantages-and-disadvantages-of-using-django

Lastly, we will look at the development �ow for Angular and how that compares with the others. The
learning curve of Angular is extremely steep, which means learning how to e�ectively utilize this
framework correctly may take months. Many aspects of the app will have to be built from the ground
up, which will take even more time. None of the team is familiar with TypeScript, so one or two of us
will have to learn a new language. The last con is notably di�cult as the CLI documentation of
Angular is extremely lacking. However, due to the mechanics of TypeScript, the code is clean, readable,
and easily reproducible. Other sources have also noted that it has great unit testing ability and
maintainability. Weighing in all of the above, we think a score of 5/7 would be the most appropriate
for this framework’s development process.

3.1.3 - Vuejs

When considering the options for our project, we noticed that this project is relatively small in
comparison to other projects needed by other corporations. While we did research front-end
frameworks that can scale down to our level, we wanted to check out a framework that is designed for a
project of our size. That's where we came across Vuejs. It is an extremely lightweight framework that
focuses on componentization and manipulating HTML pages using directives. It was developed and
released in 2014 by Evan You and is fairly popular with many companies despite it being more
bare-bones than other frameworks on the market.

How Vuejs will score on performance should be fairly obvious. Its lightweight design with its built-in
directives are extremely fast and signi�cantly more e�cient than the other frameworks.5 Considering
the drawback of many things needing to be built from the ground up, its performance will be its
greatest strength in comparison to the others. Because of this, it is widely considered to be one of the
best front-end frameworks if it's used in the right hands. We will give this a performance score of 3/3.

We will next examine how well it will be able to implement applicable security. The security of any
framework this barebone will be most certainly dependent on the developer. Most enterprises that use
Vuejs will implement another library for security alone.6 There is some documentation for the best
security practices for beginning developers. However, most of the features will be left up to us.
Unfortunately, since this team is not very experienced in managing security in web applications, we will
have to score this criterion for Vuejs very low. That being said, if we as a team were more experienced
with security then it may have been di�erent. We will give Vuejs a security ranking of 2/7.

6 https://ddi-dev.com/blog/programming/the-good-and-the-bad-of-vue-js-framework-programming/

5 https://ronakataglowid.medium.com/pros-and-cons-of-the-vue-js-framework-8015dcbc05ef

9

https://ddi-dev.com/blog/programming/the-good-and-the-bad-of-vue-js-framework-programming/
https://ronakataglowid.medium.com/pros-and-cons-of-the-vue-js-framework-8015dcbc05ef

Last but not least, we will examine its development �ow. Most of our team is at least familiar with
JavaScript. However, the approach to development is blocked by a language barrier. The developer for
this framework is not a native English speaker, which may leave a lot of ambiguity in the usage of
framework methods. Not to mention we will need to build almost everything from the ground up
which is too costly for the team’s time. However, the code is clean, readable, reusable, and great with
unit testing. These properties are expected from a barebones framework. From the information stated
above, we will designate a score of 4/7 to Vuejs in terms of development.

3.1.4 - Chosen Approach
Now, we can broaden the focus into the big picture. As we have previously discussed the pros and cons
of each framework, we can turn our attention to Table 1:

Table 1. Web Frameworks

Django Angular Vuejs

PERFORMANCE 1 2 3

SECURITY 7 5 2

DEVELOPMENT 7 5 4

TOTAL SCORE OUT OF 17 15 12 9

All three of the considered frameworks scored relatively high. The best all-around highest-scoring
framework happened to be Django, as it absolutely shines in terms of its development process as well as
performing decently in the other �elds. Due to this scoring, we have chosen Django as the best option
to suit our needs. The out-of-the-box philosophy will be a great �t for speeding up the development
�ow in terms of applicable web security and database integration which will allow us to greatly focus
on the UI aspect of the application.

To prove that the decision will work, the team will set up our out-of-the-box Django environment and
make sure our chosen database can nicely integrate into it. The team will also render out some HTML
elements and pages to make sure that the navigation of the application will be sound. Then, the team
will test the functionality of the sysadmin module to ensure it will suit their needs.

10

3.2 - Data Storage

To create our application, we will need to utilize some form of data storage. This will include a
database framework and, in most cases, a location to store that data. We will be focusing on two
“types” of data that we need to keep track of. First, we will need to store identi�cation information for
each TA. In the early stages, we believe that this will include their name, their student ID, their weekly
availability, and their personal TA experience. In further stages, this may include extraneous elements
such as a date of birth, a photograph, or a short biography. The second “type” will be the semester
information. This will include elements such as year, labs being o�ered, and the assignments of TAs.
That being said, the most important aspect of this decision will be the framework itself.
To choose a valid database, we know we need to look into four di�erent criteria; speed, accessibility,
integration, and cost. All of these criteria will be ranked out of �ve:

● Performance: How quickly can we access data from the database? How long will it take for
even the largest queries to complete? How well will the database scale with the addition of new
data?

● Accessibility: How simple is it to perform queries? Will it take extreme amounts of developer
time to learn the library? Where will the data need to be stored on the server?

● Integration: How well will the database framework integrate with our chosen web
framework?

● Cost: Will we need to purchase a separate server in order to use the database? Financially, how
much will the database cost to run?

With that criterion in mind, we have decided to investigate three di�erent database frameworks; Redis,
SQLite, and MongoDB. Next, we will provide an in-depth analysis of each database, discussing the
viability of each with respect to the prede�ned criterion.

3.2.1 - Redis

Redis is an open-source database framework that runs within the memory of its host machine.
Running in-memory means that Redis is extremely fast, and round trips to the disk aren’t necessary,
This is its primary selling point. Redis is also a key-value database rather than a relational one. This
means that each value is given a key and is subsequently only accessible by that key. Our group initially
began looking into Redis as an option by recommendation of our mentor, Volodymyr (Vova) Saruta.

11

Redis was initially released on May 10th, 2009 by Salvatore San�lippo, who has since left the project7.
It is written in C and is used by a multitude of di�erent projects such as Twitter, GitHub,
StackOver�ow, and more8.

Examining each of our desired criteria, we will begin with performance. The performance capability
of Redis is its shining quality. Due to the dataset being stored in-memory, Redis is one of the fastest
database structures commercially available. However, this also means that with scale, Redis can become
very expensive. Depending on how large the database becomes, Redis could end up taking a large
portion of the available RAM. According to our client, the entire dataset to accommodate his speci�c
department will remain roughly �xed, around 1800 data entries. For these reasons, Redis will be
receiving a score of 5/5 within the performance metric within the scope of our application.

Next, we have accessibility. Redis comes with a breadth of available commands, all of which are
documented on their website9. Further, their website also provides a lightweight tutorial to learn the
absolute basics10. Thus, we believe that Redis will not have a di�cult learning curve within the scope of
our project. However, persistence with Redis requires special con�guration. This means that the team
will have to develop a system using prede�ned Redis tools11 in order to decide where and how to store
the data outside of the memory. For these reasons, Redis will receive a 4/5 within the accessibility
metric.

In terms of integration within our chosen web framework, Django, we have a speci�c tool that is
perfect for the job; an open-source package called django-redis12. Furthermore, Redis also supports the
Python programming language, the same language that Django is written in. In terms of running
Redis on our chosen web servicing platform, Redis can be installed on any server, providing no issues
for integration. For these reasons, Redis will be receiving a score of 5/5 within the integration metric.

Finally, we have cost. The cost of Redis is minimal. However it should be noted that there is a
distinction between its open-source project and its enterprise13. Utilizing Redis the open-source
project, there is no cost whatsoever. We would run Redis on our chosen web server, for free. There are

13 https://redis.com/blog/becoming-one-redis/

12 https://github.com/jazzband/django-redis

11 https://redis.io/topics/persistence

10 https://try.redis.io/

9 https://redis.io/commands

8 https://redis.io/topics/whos-using-redis

7 https://en.wikipedia.org/wiki/Redis

12

https://redis.com/blog/becoming-one-redis/
https://github.com/jazzband/django-redis
https://redis.io/topics/persistence
https://try.redis.io/
https://redis.io/commands
https://redis.io/topics/whos-using-redis
https://en.wikipedia.org/wiki/Redis

options to run Redis on explicit Redis servers, o�ered by the company. This will not be necessary for
our application, thus Redis receives a score of 5/5 for the cost metric.

3.2.2 - SQLite
SQLite is an SQL database engine. It is known for being small, fast, and self-contained. Due to SQLite
being an SQL database, this means that it is relational, not key-value like Redis. This provides for more
robust data storage, but it does make queries more complex. SQLite was brought to the attention of
the team members that have taken CS345, Database Systems, at NAU.

SQLite was initially released on August 17th, 2000 and is written in C. It was designed by D. Richard
Hipp while working for General Dynamics14. SQLite is the most widely used database engine in the
world and can be found almost anywhere you look. For example, it is a part of every mobile phone,
every Windows 10 machine, every web browser, and more15.

Now we can begin ranking our desired criteria. Beginning again with performance, SQLite is also
known for its speed and its small size. For example, SQLite by itself is approximately 35% faster than
the �lesystem and uses 20% less disk space16. However, SQLite reads and writes data directly to a disk,
making it slower than Redis. In terms of scalability, SQLite is not explicitly designed to scale. However,
SQLite is applicable within the scope of our application. For example, SQLite themselves claims that
their own website receives about 400 thousand to 500 thousand HTTP requests per day, 15-20%
touching the database, and there are no problems 17. For this reason, SQLite will receive a score of 4/5
in the performance metric, particularly due to it being slower than Redis.

Regarding accessibility, it is important to remember that SQLite is a relational database. This implies
the usage of primary and foreign keys and the usage of complex queries such as JOIN, UNION, or
CROSS. This will increase the learning curve for SQLite, requiring more time to be spent just to
initialize the database. However, because SQLite is self-contained, we will not be requiring an outside
server to utilize it. This means that all data will be stored on a local disk relative to the web service we
decide on. For these reasons, SQLite will be receiving a score of 3/5 in the accessibility metric.

17 https://www.sqlite.org/whentouse.html

16 https://www.sqlite.org/fasterthanfs.html

15 https://www.sqlite.org/mostdeployed.html

14 https://en.wikipedia.org/wiki/SQLite

13

https://www.sqlite.org/whentouse.html
https://www.sqlite.org/fasterthanfs.html
https://www.sqlite.org/mostdeployed.html
https://en.wikipedia.org/wiki/SQLite

In terms of integration with Django, SQLite is actually the default con�guration, which also implies
that SQLite has support for Python. As we have previously stated, SQLite is entirely self-contained.
Thus, we would not need to worry about integration issues onto our chosen web service, SQLite can
be simply installed. For these reasons, SQLite will be receiving a score of 5/5 within the integration
metric.

The cost of SQLite does not exist. SQLite is completely free and can be deployed anywhere, private or
commercial. For this reason, SQLite will be receiving a score of 5/5 for the cost metric.

3.2.3 - MongoDB

Turning our attention away from a relational SQL database, we can now examine our �nal contender:
MongoDB. MongoDB is considered a NoSQL-document database. A document database is one that is
nonrelational, it is designed to store and query data as documents, like JSON18. This allows the data to
be more human-readable and provides more �exibility and modularity. For example, documents can be
considered hierarchical, allowing them to move with our application’s needs.

MongoDB was initially released on February 11th, 2009 and is written in C++, JavaScript, and
Python. It was designed by a company known as 10gen, now known as MongoDB Inc19. Multiple
companies deploy MongoDB in their tech stack such as Sega, Google, and Verizon20.

To begin our rankings for MongoDB, we will look at performance. Recalling that MongoDB is a
document based database, it is designed for massive queries and storage. This, in turn, means that as
MongoDB scales upward, it also becomes slower. However, within the scope of our application, the
sheer size of MongoDB is unnecessary. Thus, MongoDB will receive a rating of 3/5 for the
performance metric of our application.

Looking into the accessibility of MongoDB, the queries are performed in a very similar manner to
that of a relational database. However, MongoDB does not support the same operations semantically.
For example, in place of JOINs, MongoDB might use an operation such as “lookup”21. This will
increase the learning curve for the team, as nobody has experience with document databases.

21 https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/

20 https://www.mongodb.com/

19 https://en.wikipedia.org/wiki/MongoDB

18 https://aws.amazon.com/nosql/document/

14

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/
https://www.mongodb.com/
https://en.wikipedia.org/wiki/MongoDB
https://aws.amazon.com/nosql/document/

MongoDB also stores all data on a disk within a prede�ned MongoDB cloud server, meaning it will
not run locally outside of lower “tiers”. This will also in�uence the cost factor of using MongoDB. For
these reasons, MongoDB will receive a score of 2/5 regarding the accessibility metric.

To integrate MongoDB with Django, our chosen web framework, we have three tools available:
PyMongo, MongoEngine, and Djongo. All three of these options provide an e�ective connection to
Django, though PyMongo is the o�cial and preferred way to connect22. MongoDB would not be
running locally on our web service, it would be running on it’s own dedicated server. For these reasons,
MongoDB will be receiving a score of 4/5 within the integration metric.

Finally, examining cost: MongoDB does provide limited service for free. There are two free options,
MongoDB Atlas and MongoDB Community Server. Atlas is a cloud database, though there is a
limited amount of storage available for the free tier. The Community Server o�ers a similar solution,
though it runs locally. However, it also only provides limited storage. That being said, there exists an
option to run a shared server, though it is recommended only to use this as a sandbox environment and
is not entirely secure. A dedicated server will cost $57 per month and a serverless setup will cost $0.30
for the �rst 5 million reads per day23. For these reasons, MongoDB will receive a score of 1/5 for the
cost metric.

3.2.4 - Chosen Approach

Now, we can broaden our focus into the big picture. As we have previously discussed the pros and cons
of each database, we can turn our attention to Table 2:

Table 2. Data Storage

Redis SQLite MongoDB

PERFORMANCE 5 4 3

ACC�SIBILITY 4 3 2

INTEGRATION 5 5 4

COST 5 5 1

TOTAL SCORE 19 17 10

23 https://www.mongodb.com/pricing

22 https://www.mongodb.com/compatibility/mongodb-and-django

15

https://www.mongodb.com/pricing
https://www.mongodb.com/compatibility/mongodb-and-django

It is immediately apparent that Redis excels in every considered metric. Though it is tied with SQLite
in terms of integration and cost, we believe that the speed and accessibility of Redis allows it to
outperform SQLite, especially for our application. MongoDB is far too large for a project of this scale
and thus will no longer be considered. Due to this information, we have chosen Redis as the best
option to suit our needs, with SQLite as a close second. We believe that our application needs to be fast
and modular. Redis provides us with both of those requirements quite simply: Redis runs in memory
and has Python support, allowing for exceptional speed and simple implementation.

Finally, to prove that our decision will work, we will establish a Django environment to be used for
testing purposes. Using this environment, we will initialize a Redis database, populate it with sample
data, and perform unit tests. This will work hand-in-hand with our Django prototype, allowing the
team to test multiple facets at once. The team will provide a demonstration of the technology at a later
date.

3.3 - Admission

In the team’s scheduling application, TAs will be able to view their time schedule, update their pro�les,
and update their time availability. The system will be designed to only give one account to one TA at a
time. Otherwise, this may cause the following problems: providing a large number of irrelevant
accounts to the database, increasing the potential risk of malicious account creation, and holding
duplicate accounts that are related to one TA. Obviously, those problems increase the database size and
decrease its security, which also leads to extra work for the lab coordinator. To make the app more
e�ective and secure to use, the team needs to come up with a solution that allows TAs to not only
create their own accounts but also ensure that only one account is created for each TA. The proposed
solution has four indicators:

● User-friendly: How easy will it be for users to create an account under the chosen solution?
Will the user have di�culty learning how to create an account?

● Accessibility: Will TAs be able to create duplicate accounts under the solution? Will the
solution provide non-useable account information? Will the solution connect to the system in
an e�cient fashion?

● Privacy & Security: Will this solution cause user privacy leakage during the process? Will it
prevent malicious behavior?

● Technical Di�culties: How easy is it to implement the solution?

16

Under these circumstances, there are two possibilities: utilizing pre-existing Google Forms or using the
application to send personalized links and forms to the TA’s. This document will now provide a
detailed analysis of both options.

3.3.1 - Google Form

Google Forms is a survey administration software managed by one of the largest corporations in the
world. It’s free to use and acts as a web-based application.24 The app allows users to create and edit
surveys online while collaborating with other users in real-time. The collected information can be
automatically injected into a spreadsheet. The team is considering this solution because an organized
list of accounts would be convenient. The accounts will be located in a �le changeable by multiple
people, which is somewhat similar functionality to a cloud-based collab document, such as Google
Docs. The Google Form will be modi�ed by the recipient of the private link, which would prevent any
extraneous account creation.

Since Google Forms are widely used for multiple di�erent purposes, a Google Form will be a highly
user-friendly solution. There is a minimal learning curve, thus the team have given Google Forms a
score of 5/5 in terms of being user-friendly.

In terms of accessibility, Google Forms doesn’t have any particular use-cases within the scope of the
project. There are, however, two potential options: conversion into an Excel spreadsheet or scraping
the HTML itself. Both solutions to this problem require extraneous programs to do this automatically.
For this reason, Google Forms will be receiving a score of 2/5 for accessibility.

The privacy & security of Google Forms has two elements: the security of Google themselves and the
privacy of the link being sent out. The only issue with security using Google Forms could be a data
breach upon Google. However, we would not be asking users for sensitive data via the form, thus the
risk is negligible. In terms of privacy risks, the link to the form could arrive in an incorrect inbox, for
example, if a TA sends their link to a friend. However, since only one account can be created per link,
this would not threaten their privacy. For these reasons, Google Forms will receive a score of 4/5 for
privacy & security.

The technical di�culties of setting up a Google Form is virtually nonexistent. The technology
already exists as such the only challenge would be data extraction. For this reason, Google Forms will
receive a score of 4/5 for technical di�culties.

24 https://en.wikipedia.org/wiki/Google_Forms

17

https://en.wikipedia.org/wiki/Google_Forms

3.3.2 - Custom Form Creation
The next option involves manually creating a private link sending it to recipients in order to sign up.
This method is used in most apps’ account creation veri�cation. The team is considering this method
as they are very familiar with email con�rmation through links.25

Examining the user-friendliness of this approach, this is entirely up to our implementation. The
developers will be responsible for designing and sending out personal links and every decision can be
customized speci�cally for the application. Furthermore, the team will also be able to construct the
sign-up page with further instructions, allowing for a deeper understanding of creating an account. For
these reasons, the team will be giving themselves a 5/5 for user-friendliness.

In terms of accessibility, TAs will create their accounts directly within the application. From there the
team would be able to plug the data immediately into the backend system. For this reason, the team
will be giving themselves a score of 5/5 for accessibility.

Next, we have privacy & security. In this scenario, TAs will follow the link to sign up and �ll out the
information as needed. Then, the account will be created and stored in the backend. No duplicate
account will be created since every link can create only one account and will expire after a set time
period. The link is private to a speci�c TA, barring the possibility of the link being passed around by
the TA themselves. This means that the link’s security is dependent on the TA, though the account is
pre-created and the link simply provides access as well as a temporary password.. Thus, the team will be
giving ourselves a score of 5/5 for privacy and security.

The primary issue with this approach will be the technical di�culty. For this to function properly,
the team must develop account-creation pages with unique links for each TA. Then, they would need
to send those links out to each individual TA separately. Finally, the developers would need to set a
timer on those web pages after expiration to avoid cluttering the storage on the server. All of the stated
issues will generate more work and require a more technical understanding of the chosen web
framework. For these reasons, we will be receiving a score of 2/5 for technical di�culty.

25 https://�rebase.google.com/docs/dynamic-links/use-cases/user-to-user

18

https://firebase.google.com/docs/dynamic-links/use-cases/user-to-user

3.3.3 - Chosen Approach

After our research and assigning scores to each candidate, we can look at Table 3:

Table 3. Admission

Google From Custom Form Creation

USER-FRIENDLY 5 5

DATA USABILITY 2 5

PRIVACY & SECURITY 4 5

TECHNICAL DIFFICULTY 4 3

TOTAL SCORE 15 18

Examining these results, it is clear that developing our own internal system for account creation beats
using a Google Form in nearly every respect. The higher technical di�culty is a good tradeo� for the
bene�ts of the custom-created form controlled by the developers. The client has asked The Magisters
to provide an environment in which most of his work will be automated. If the team chose to use
Google Forms, automatic service isn’t entirely guaranteed. Due to this information, the team can
con�dently say that creating our own system and custom form creation will be the best option.

Finally, to prove that the decision will work, the team will create a system within the Django
environment to test the ability to dynamically create links to be sent out to individual TAs. The
developers will also prototype the idea of sending links directly from the website, eliminating the
manual work for the client to await responses within his own inbox.

3.4 - Web Servicing

Next up, we will examine the problem of web servicing. The application will need a safe and secure
servicing platform to deploy. An e�cient web server within the scope of the application will require a
number of di�erent elements. For example, the server will need to be responsive, durable, and be
protected against failure. The developers will need to be able to access the server, and users must
successfully connect to the website. The server must also be secure, doing everything possible to avoid
unauthorized access. Finally, the cost of the server must be calculated in order to maintain it over
extended periods of time. For these reasons, the document have de�ned a set of four criteria:

19

● Performance: How quickly can the server respond to requests? How will the server respond to
changes? How does the chosen service provide failure protection?

● Accessibility: How easy will it be for the end-user to access the web service? How easily will
the team be able to make changes?

● Security: How secure is this web service? Does the service provide its own form of
authorization?

● Cost: How much does the web service cost to maintain? Does the platform provide any extra
services, and if so, how will that cost be calculated?

Having de�ned these metrics, the document can begin an in-depth analysis of three di�erent
candidates; AWS (Amazon Web Services), hosting a VPS (virtual private server) via NAU, and using a
third-party provider, Hostwinds.

3.4.1 - AWS
AWS is a subsidiary company of Amazon, which was created to provide an on-demand cloud
computing service. AWS o�ers over 200 di�erent products26, each with speci�c properties designed to
aid any use case. AWS was �rst created in 2006 and has since been used by many companies for their
provided service, one such company being P�zer. The group decided to look into AWS as it is widely
popular and was mentioned by Dr. Fofanov as a possibility.

In terms of performance, AWS is largely dependent on which services are chosen to deploy. There are
a plethora of di�erent front-end and web application services27 that would allow the team to quickly
get the product up and running. Furthermore, the servers run 24/7, are very responsive, and provide a
network of di�erent servers automatically allocated in the event of a single server failure. For these
reasons, AWS will receive a score of 5/5 for performance.

AWS is known for its accessibility given that it is designed for consumers. It also allows domain name
registration as part of the service. The team would be required to create an AWS account shared
between the four of them in order to access the �les/backend. Accessing the website is similar to
accessing the source �les to any other. Given its ease of access for both the team and the end-user with
minor con�guration, AWS is ranked 4/5 in terms of accessibility.

27 https://aws.amazon.com/products/frontend-web-mobile/?nc2=h_ql_sol_use_ms

26 https://en.wikipedia.org/wiki/Amazon_Web_Services

20

https://aws.amazon.com/products/frontend-web-mobile/?nc2=h_ql_sol_use_ms
https://en.wikipedia.org/wiki/Amazon_Web_Services

For security, AWS is packaged with secure servers by default. These servers would protect against
common web-based attacks as well as provide authentication services such that nobody outside of the
team would be able to access them. For these reasons, AWS will receive a score of 5/5 for security.

In terms of cost, AWS provides a “pay as you go” architecture. This means that the server can be
con�gured to only charge the account based on up-times, services requested, and packages deployed.
AWS also o�ers free options, which include free trials, 12 months free, and permanently free options28.
Utilizing the non-free options, the cost would scale with usage. Thus, AWS will receive a score of 2/5
with respect to cost.

3.4.2 - NAU VPS

NAU, being a large university, maintains and provides its own series of networks. For example, NAU
runs its own website as well as their own private networks, such as the CEFNS Linux server. Asking
NAU to provide a VPS was a decision made by the group in an e�ort to keep our application localized,
thus modi�able for our client.

The performance of an NAU VPS will largely be dependent on the tra�c of a large university. For
example, the performance may drop during busier times of the year, but may rise during slower
periods. The performance may also be de�ned by the level of clearance given to the team by the
university. Given that it is di�cult to gauge the performance of NAU’s network, the group will assume
that an institution such as NAU maintains their servers. Thus, NAU will receive a score of 2/5 with
respect to performance.

In terms of accessibility, it may be di�cult to maintain access to NAU’s network for extended periods
of time. Given the awkward accessing routine of the team’s capstone website, the team can assume a
similar scenario with a VPS. In terms of the end user accessing the website, we would be given an
extension of NAU’s network, meaning they would not have our own domain, thus reducing the
portability of the �nal product. For this reason, NAU will receive a score of 2/5 in terms of
accessibility.

Regarding security, the team can assume that NAU as a large institution, provides proper security
measures in accordance with the modern standard. It should also be noted that in order for anyone to

28 https://aws.amazon.com/free/

21

https://aws.amazon.com/free/

access the network o�-campus, they must be connected to a VPN. For this reason, NAU will receive a
score of 4/5 within the security metric.

Finally, looking at cost, we will assume that an NAU VPS would not cost anything for the team nor for
our client. For this reason, NAU will receive a score of 5/5 regarding cost.

3.4.3 - Hostwinds

Finally, the team will be considering a third party option for the web servicing needs. Hostwinds is a
VPS hosting service founded in 2010 by Peter Holden. It is a private company that o�ers a variety of
di�erent VPS options for a multitude of di�erent operating systems. Hostwinds also provides a
secondary option in the form of dedicated web hosting, which comes with di�erent options. The team
decided to investigate Hostwinds as most of us have experience with them in the past.

Regarding performance, Hostwinds provides di�erent service-levels based on subscription tier for
VPSs. For example, at their lowest tier, we would receive one CPU and one terabyte of bandwidth. At
the highest level, they will give sixteen CPUs and nine terabytes of bandwidth. In addition, all
Hostwinds plans come with 99.999% uptime, custom ISOs, and solid state drives29. For these reasons,
Hostwinds will receive a score of 4/5 in terms of performance.

In terms of accessibility, Hostwinds provides the ability to SSH directly into the server. This means
that, with the proper encryption, every member of the team would be able to access the server from
anywhere. Thus, the team would be able to push changes at any time. Further, the servers do come
with a guaranteed 99.999% uptime, meaning they would remain accessible to end users for a majority
of the time. For this reason, Hostwinds will receive a score of 5/5 within the accessibility metric.

For security, Hostwinds provides two options in terms of VPS platforms; managed and unmanaged.
Managed servers come with security options and service via Hostwinds while unmanaged servers do
not. Using a dedicated web host, the website would also receive free SSL certi�cates. However, security
con�guration would still be required for either option. For these reasons, Hostwinds will receive a
score of 3/5 for security.

For cost, Hostwinds ranges anywhere from $6 a month to $300 a month. Within the scope of the
application, we expect to only require roughly $8 a month for the advanced web hosting service, which

29 https://www.hostwinds.com/vps/linux

22

https://www.hostwinds.com/vps/linux

provides unlimited bandwidth as well as unlimited disk space. As Hostwinds is not free, it will receive a
score of 3/5 for the cost metric.

3.4.4 - Chosen Approach

Now, the document can assess the scores of the above criterion. As we have previously discussed the
pros and cons of each system, we can turn our attention to Table 4:

Table 4. Web Servicing

AWS NAU Hostwinds

PERFORMANCE 5 2 4

ACC�SIBILITY 4 2 5

SECURITY 5 4 3

COST 2 5 3

TOTAL SCORE 16 13 15

Based on this information, AWS has received the highest total score, winning with respect to
performance and security. The primary downside to using AWS is the cost, though a project of this
scale will not grow to exponential size, thus reducing the overall cost of AWS. Hostwinds is a very close
second, with the determined accessibility ranking higher. However, the team believes that the overall
bene�ts of AWS outweigh the personal use-cases of Hostwinds. The team will no longer be considering
an NAU VPS as an option due to our needs of portability, and they are not permanently connected to
the institution. Due to this information, AWS will be the best service to host the application.

Finally, to prove that this decision will work, the team will establish an AWS environment to deploy a
Django prototype, also utilizing the Redis prototype. Further information will be elaborated upon
within a technical demo.

23

3.5 - Penalty System

In terms of technical challenges, the penalty system will be the most logic-intensive. The team will be
required to develop an intelligent algorithm that will sort TAs based on multiple di�erent constraints.
For example, we will need to sort TAs based on their strengths, and weaknesses, and weekly availability.
To accomplish this, the team has decided to investigate open source solutions to avoid reinventing the
wheel. Within the scope of the project, the group will be using a penalty system that assigns integer
values, each with a di�erent weight, to di�erent constraints o�ered by the TA. For example, if the TA
cannot work between the hours of 2 pm and 4 pm on a Thursday afternoon, they might be assigned a
value of “-1”, ensuring that they will not be scheduled during that time. The team has determined two
di�erent metrics to determine the best solution:

● Implementation: How costly will the algorithm be to implement? Will it take the team too
much time?

● Speed: Will the algorithm provide timely output? Will it be feasible to run the algorithm
multiple times with di�erent constraints?

Using those two metrics, the team has realized two methods to approach this problem. Firstly, the team
has found a discussion of an optimization algorithm from a website hosted by Cornell University30

that attempts to solve a problem similar to the projects’ own optimization issue. To start o�, the
document will delve into the details of each. Second, the document will weigh the pros and cons of
developing a custom algorithm internally. It should be noted that the team will keep their options
open, should any other algorithms be brought to their attention in the future.

3.5.1 - Nursing Optimization Algorithm

The nursing optimization algorithm was developed by Murphy Choy and Michelle Cheong in 201231.
Choy and Cheong used a mixed integer programming model that monitors both the hospital’s
requirements and the nurse’s preference. The algorithm optimizes both of these values in an e�ort to
maximize the total utility and minimize the total cost of all nurses. Further, the algorithm de�nes a set
of “key constraints” that entirely prevent a nurse from working during speci�c hours of the day. For
example, in a shift constraint, a nurse may not work more than a single shift per day. The researchers say
that the algorithm has been deployed to a general care ward that e�ectively automates the scheduling
system.

31 https://arxiv.org/ftp/arxiv/papers/1210/1210.3652.pdf

30 https://arxiv.org/abs/1210.3652

24

https://arxiv.org/ftp/arxiv/papers/1210/1210.3652.pdf
https://arxiv.org/abs/1210.3652

In terms of implementation, the nursing optimization algorithm would be quite simple. The team
would out�t an already existing algorithm for their own purposes. However, the team would be
required to translate the algorithm into code. Thus, the nursing optimization algorithm will receive a
score of 4/5 in terms of implementation.

Next, speed. The nursing optimization algorithm appears to have too many attributes with respect to
what we need for our project. For example, the number of shifts worked in consecutive days is not
useful to the project, assuming the labs already have prede�ned dates. Additionally, the unassignment
of all TAs within the algorithm would be extremely slow for large amounts of TA’s. In terms of
throughput, the algorithm could be trimmed down and become an e�cient solution to the problem.
The nursing optimization algorithm will receive a score of 3/5 with respect to speed.

3.5.2 - Internal Optimization Algorithm

The team has considered the possibility of developing a custom algorithm to satisfy the requirements.
This way, the team would not need to consider the irrelevant aspects of the nursing optimization
algorithm and could focus on the immediate needs of the client.

Our algorithm would essentially be a tree building algorithm or a clustering algorithm, the basic idea of
which is to take in a list of variables and “weights” for those variables and run them through a heuristic
such as the following:

Weight that could be assigned by Lab Organizer
C1 = -999 A- Scheduling con�ict(0/1)
C2 = 5 B - Experience (0,1,2,3)
C3 = 2 C - prev teaching (0,1)
C4 = 10 D - Gta eval score (0,1,2)
Total score= C1A + C2B + C3C+ C4D

The algorithm attempts to maximize its score as much as possible. The client would be able to change
the weights associated with each of these example criteria or add their own. This could be accomplished
by assigning each new criteria to a two-dimensional array with the name of the criteria and the cost
associated with it being considered. One such approach could be a greedy algorithm that iterates
through all of the TAs and �nds the top three classes for them based on their total cost. However, the
team also must consider that some classes are more di�cult to sta� than others due to di�cult time

25

ranges. As such, the developers must give priority to the classes that are hardest to sta�. For example, a
TA might have a higher total score for one class than another in a naive approach, but the other class
only could be sta�ed by one TA, and thus that class should be picked instead. This will be
accomplished by looking at the time availability of the TAs as the algorithm �nds classes with
minimum listed time availability. When TAs are assigned, we give those classes higher scores within the
algorithm.

With respect to implementation, the developers would start from scratch. That means the team
would be required to develop a setlist of constraints based on the speci�cations of the client. With that,
the algorithm would be more appropriate for the speci�c use-case of the client. Given these algorithm
suggestions come directly from our client, they will not require much change and should be
implemented with ease. Additionally, this will mean less refactoring and modi�cation to implement
the solution into code. For these reasons, the team’s own implementation will be receiving a score of
5/5.

Speed for our algorithm will likely be very fast as it is essentially accomplished within a single loop and
thus should take negligible amounts of time. The solution is essentially a clustering algorithm and thus
has a low maximal time complexity. Given that as opposed to the nursing problem the team does not
have a need to unassign all of the scheduled TAs, and could likely be accomplished by a single loop.
The Internal Optimization algorithm will receive a score of 5/5 in terms of speed.

3.4.4 - Chosen Approach

Now that we have discussed each candidate, we can examine the table:

Table 5. Penalty System

Nursing Optimization Internal Optimization

IMPLEMENTATION 4 5

SPEED 3 5

TOTAL SCORE 7 10

The team has determined that writing their own internal algorithm will provide an advantage over
utilizing the nursing algorithm. Constructing a personalized algorithm will produce a better �nal
product for the desired goal in terms of both the team’s ability to implement it as well as the speed of

26

the solution. With that in mind, the developers have decided to write our own algorithm based on
the suggestions of our client Dr. Fofanov.

Finally, to prove the feasibility, the team will be prototyping the algorithm with respect to their chosen
database, Redis. Utilizing that information, they will be providing a technological demonstration at a
later date, on top of the Django prototype.

4 - TECHNOLOGY INTEGRATION
After the team’s numerous decisions on the best technology to implement a sound solution, the
document will now show the big picture as a diagram. Since everything integrates nicely into one
another, a stable, fast, and reliable interface will be underway very soon. The team will be integrating
Django, Redis databases, AWS, and the internal optimization algorithm in a way that is shown in
Figure 1:

Figure 1. Tech Integration

27

The hosting machine will be provided by AWS. The Magisters will have to choose a service that will
su�ce the RAM requirements for the database. The database will be stored in memory rather than
disk, which means the changes to it will occur there. The database will be interfaced by Django and will
render the di�erent pages necessary for the user to complete their tasks. Some of which will send
requests to the server to edit parts of the database. Requests from the user/superuser will be processed
and will trigger changes within the database. Meanwhile, the state of the database will always be
rendered by Django so that all users can examine which changes were made. To initialize the Redis
database, the team will send out personal links to the various users so they can �ll out a form likely
provided by Django. The web app will then take the �lled information and directly inject it to the
Redis database. Any changes made to the database will be handled by the internal optimizer so that the
data can be readily used to make scheduling assignments. Then it would display using the current
schedule generated by the optimization algorithm as well as the option to update existing TAs or to
send a form to add new TAs.

With this model in mind, they have thought out the direction they want to head towards and how they
will want to implement the solution. The speci�cs of the technology have been greatly thought
through, and this diagram is a culmination of their work. Given all of the technologies the document
has discussed thus far, the team intends to integrate them all into a single application that solves the
problem of sorting TAs by time availability and schedule; which leads the document to its conclusion.

5 - CONCLUSION
Scheduling large groups of people can be a challenging task, mainly because of its time consumption.
Dr. Fofanov currently uses an Excel spreadsheet alone to assign TAs. This process can take days and is a
regularly occurring issue not only for our client, but for all group organizers scheduling GREAT
masses of people. Team Magisters seeks to remedy this issue and turn a multiple day problem into a
minute-long one.

The Magister’s solution involves hosting a TA organizing web application on an Amazon Web Service
hosting machine. This system would use a Redis database in pair with an internal optimization
algorithm that automatically sorts TAs into an optimal position based on their time availability and
relevant skills. This information is received from a form sent by the Lab Organizer. The TA will then
complete their account creation via email veri�cation. The team chose these technologies based on the
various qualities that we have listed earlier in the document. Due to those criteria, we know that the

28

best technologies have been chosen to suit the needs of the product. The team is very con�dent in their
ability to integrate and implement our chosen technologies together into one complete application.
After completing the �rst milestone, the developers will progress to the prototyping and testing phase
of development. Once that is �nished, they will then move on to a �nal implementation and release the
completed web application.

29

