
Technological Feasibility Analysis

11/02/21

GeoSTAC

Sponsor:
United States Geological Survey (USGS)

Astrogeology Science Center

Mentor: Melissa Rose

Team Members:
Jacob Cain

Zachary Kaufman
Gavin Nelson
Amy Stamile

Table of Contents

1 Introduction 2

2 Technological Challenges 3

3 Technology Analysis 4
3.1 GeoTIFF Rendering in Leaflet 4
3.2 Search Images Functionality 9
3.3 GeoJSON Tile Layer in Leaflet 11
3.4 Selection Tools in Leaflet 15

4 Technology Integration 19

5 Conclusion 20

6 References 21

1

1 Introduction

To date, scientists have explored about 4% of the visible universe (Dunbar).
Scientific knowledge of other planets is informed by data and images that astronomers
have obtained from satellites and robotic planetary missions. As space exploration
increases among both federal agencies and private civilians there is a need for
community access to accurate up-to-date maps and data. The next big target for
exploration is Mars because of the proximity to Earth inside of our solar system. Mars
could be riddled with potential resources that Earth currently lacks. In order to plan this
next exploration, it is very important that scientists use the data and images that our
satellites and non-human space missions have gathered. Using these resources,
scientists can create a map of a planet like Mars to plan for future space exploration
missions. There are many tools that allow scientists to analyze and create maps from
the information gathered; however, these tools are not well-developed and require the
individual user to download terabytes of data on their own devices. The data that is
downloaded most of the time is not analysis ready for the science community.

1.1 The Problem:

The United States Geological Survey (USGS) Astrogeology Science Center
provides critical resource support for several NASA satellites and robotic planetary
missions. USGS also provides support with the data processing software scientists,
students and the general public. The clients have implemented a new standard for
storing and accessing geological information and an image of a given location on a
planet. This data is stored using the spatial temporal asset catalog (STAC). STAC
provides a range of geospatial data sets, such as images, geographic data, and date
and time information. This information can be easily indexed giving users access to this
analysis ready data. The issue with implementing a new standard for storing and
accessing data is that there are no interfaces that currently implement STAC for the
planetary science community. Without interfaces that implement STAC, users must
download large amounts of data and process this data on their own devices. STAC will
contain assets that are typically images in a Cloud Optimized GeoTIFF format, but can
also be entire packs of related images called catalogs. By having a Cloud Optimized
storage system it will stop the need for having to process and display the TIFF assets
on their devices instead of on a friendly web interface. USGS has all these STAC assets
with no way of providing them to scientists, students and the general public.

In 2019, USGS assigned an NAU capstone team to develop a virtual planetary
mapping viewer. The team that developed this new planetary viewer is called
CartoCosmo. The CartoCosmo team developed an enhanced planetary viewer using

2

Leaflet. The CartoCosmo viewer is great for visualizing large planetary image mosaics,
but has no support for visualizing these individual STAC assets or STAC catalogs. Thus,
the USGS team has tasked Team GeoSTAC with upgrading and adding new features to
this viewer to add the ability to visualize individual STAC assets locations on a map of
Mars and load the actual selected STAC images into the CartoCosmos viewer.

1.2 Our Solution:

The team will be implementing new features to the CartoCosmo viewer using
JavaScript and Leaflet plugins containing the required mapping and rendering
capabilities to support the new STAC standard. The team will ingest the USGS STAC
catalog made of JSON to gather image footprints - an image's true location on Mars - in
geoJSON format. The team will then implement a new feature in the existing Leaflet, an
open-source JavaScript Library for developing interactive maps, to show these
footprints using simple polygons on the existing maps. Users will be able to select a
single polygon or multiple polygons using a selector tool to load the Cloud Optimized
GeoTIFF assets. This new Leaflet viewer will be connected to USGS STAC catalog with
the ability to provide a convenient way for a user to functionally search for images that
contain or match specific input data. In the section below, the technological challenges
will identify the challenges that need to be addressed when implementing the solution
for this project.

2 Technological Challenges

The first technical challenge of this project is accessing the STAC catalog data
using a web-based solution using JavaScript or a similar technology. This may involve
loading only a narrow subset of the available data. Tiles outside of the user’s view or
zoom range will not be loaded until necessary, as the complete data is too large to be
streamed all at once on a web page. The formats that the client uses are optimised to
be partially loaded this way, but it could still be a challenge working with these formats
in a web-based environment.

After mapping and data loading, selection is the next concern. Users will need
selection tools to specify and locate relevant data. They should have the ability to pan
and zoom around the map and select an area of interest. Ideally, users will be able to
outline an area of focus by clicking points and drawing a polygon. Text search to filter
through the data would be helpful: users could specify date collected or data source.

3

Finally, there may be multiple data results for the same area, so a layering solution will
be needed to differentiate between close or overlapping images.

In summary, here is a list of the project requirements:

● Web-Based
○ HTML/CSS/JavaScript
○ Leaflet

● Loading and Displaying Map Tiles
● Loading Data formats

○ GeoJSON
○ GeoTIFF
○ STAC

● Displaying data locations/footprints
● Tile Navigation
● Ability for arbitrary maps (not only Earth)
● Text Searching
● Area Selection
● Displaying Data

○ Differentiation between data with close or overlapping locations
○ Filtering

3 Technology Analysis

The project has restrictive guidelines in terms of what software to utilize. These
guidelines include expanding off an existing Leaflet modification from the previous
CartoCosmos capstone project. Therefore, there is a limited range of technology to
choose from. That said, various plugins that have been designed for Leaflet. Thanks to
Leaflet’s diverse user base, many solutions are already available. Some requirements
for the project are rendering GeoTIFF images in Leaflet, overlaying GeoJSON polygons
on existing planetary mosaic images, searching with text, and making selections. This
section explores these issues in detail and the team’s analysis of what plugins met the
requirements for this project.

3.1 GeoTIFF Rendering in Leaflet

GeoTIFF is a file extension that contains geographic metadata describing the
spatial location of an individual pixel. There will be references to these GeoTIFFs inside

4

of the GeoJSONs that are obtained from the STAC catalog. Currently the existing
Leaflet that CartoCosmos developed does not support GeoTIFFs. A GeoTIFF viewer
will need to be implemented inside of the existing Leaflet map that CartoCosmos has
already developed. The team's goal is once a polygon inside of our Leaflet map is
selected, the corresponding GeoTIFF asset will load into a viewer. This viewer will be
able to render multiple GeoTIFFs inside of it providing the ability to choose an individual
or multiple footprints. The viewer should allow the user to interact with the GeoTIFF
assets by zooming and moving around on the image. The existing GUI that is being
updated uses Leaflet, an open-source JavaScript Library for developing interactive
maps. In this section will go into specifics of what existing Leaflet and JavaScript
plugins/libraries that can be utilized to meet the needs of rendering a GeoTIFF asset
inside of Leaflet. The metrics used to decide the plugin for rendering the GeoTIFF
assets are:

● Features
● Scalability
● Documentation
● Maintainability

These metrics will judge the different Leaflet and JavaScript plugins/libraries for
rendering GeoTIFFs inside of Leaflet. The first metric determines whether the approach
has an easy-to-use viewer. The viewer cannot be difficult to use or understand because
it needs to be for people of all backgrounds. The second metric determines if multiple
GeoTIFF assets can be loaded inside of a single viewer. The third metric will provide
guidelines on how to use and implement the plugin into the existing Leaflet map that
CartoCosmo developed. The last metric is to ensure that the plugin is being maintained
and updated regularly.

3.1.1 Candidates:

The two potential candidates evaluated to successfully render GeoTIFF assets
are Leaflet GeoTIFF-2 plugin and GeoRaster Layer for Leaflet. Leaflet GeoTiff-2 is a
Leaflet plugin for displaying GeoTIFF asset data. Assets can be drawn as colored
rasters or with direction arrows. These layers can be clipped using a polygon.
GeoRaster Layer for Leaflet is also a Leaflet plugin. It is capable of loading and
displaying large scale GeoTIFFS greater than hundred megabytes and supports custom
rendering such as colors, directional arrows, and context drawing. In the subsections
each solution specifics will be looked at if they meet the metrics that the team has
decided upon.

5

Leaflet GeoTIFF-2 Plugin:

Figure 1.1: Leaflet GeoTIFF-2 Plugin Example

The first solution involves using Leaflet GeoTIFF-2, an official LeafletJS plugin for
displaying GeoTIFF raster data originally developed by Stuart Matthews, but now is
under CSIRO’s open source software license agreement. This plugin was created
because there was not an easy way of viewing GeoTIFF raster data inside of web
browsers. Browsers support all different kinds of image extension, but the tiff format is
not among that list. By creating a Leaflet plugin, anyone can look at the rendered
GeoTIFF raster data inside of any browser given that Leaflet is part of the JavaScript
library. This plugin supports all Leaflet versions after Leaflet 0.7.7.This plugin uses
geotiff.js to render the GeoTIFF raster data from the tif asset and then displays the data.
The data can be drawn as a colored raster or with direction arrows.

This plugin has the ability to load and render multiple GeoTIFF assets inside of
our already existing Leaflet map. There would be two possible ways of loading the
GeoTIFF asset data into a given map, the first would be creating a new Leaflet when
clicking on a drawn polygon. The other option would be just loading all of the GeoTIFF
assets that are gathered from the STAC catalog on top of CartoCosmo map as new
polygons. By not using a new GUI application it will have all the same functionality that
base Leaflet already has such as zooming and moving around a given image. The data
can be displayed very simply using either a custom color scheme as seen above or
using arrows to display the raster data to the user. In the example above, both the
custom color scheme and arrows are displayed allowing the user to further understand
the raster information.

In terms of implementability and maintainability, the given plugin can easily be
installed using npm install giving the team access to all the written classes that will be
needed for rendering and displaying a given asset. This plugin is open source on both
GitHub and npmjs.com. This has been contributed to recently in the last month, making
it version 1.0.0 on both GitHub and npmjs.com. This plugin gets new updates
continuously with any one being able to contribute being an open source project. After
looking into this Leaflet plugin the team found:

6

● Features: Custom colored or with Arrows of raster data
● Scalability: Yes
● Documentation: One example, GitHub Guide
● Maintainability: Updated to Version 1.0.0 on 9/30/2021

GeoRaster layer for Leaflet Plugin:

Figure 1.2: GeoRaster Layer for Leaflet Plugin Example

GeoRaster layer for Leaflet is a Leaflet plugin that allows visualization of
GeoTIFFs on a web map. This plugin is created by Daniel J. Dufour of GeoSurge.
GeoSurge is a geospatial technology company with a focus on data compression,
natural language processing, remote sensing and visualizations. He works on quite a
view open source projects for the geospatial field.

GeoRaster layer for Leaflet is a newer open-source plugin for leaflet that has
been maintained on GitHub. The main reason that the GeoRaster layer for Leaflet was
created was to support all projections. GeoRaster was also created to make rendering
GeoRaster data load faster inside of Leaflet. It uses a unique technique for rendering
called neighbor interpolation. This means it is rendering pixels inside of the Leaflet map
by assuming the values of the pixels right next to the current pixel that is being
rendered.

GeoRaster is able to load multiple GeoTIFFs, especially at a larger scale.
GeoRaster allows for Server-Free GeoTIFF visualization by not relying on WebGL. The
GeoTIFF is able to load over top of the CartoCosmo map like seen above or load a
different Leaflet for all the different GeoTIFFs that are selected. GeoRaster would be
very easy to use allowing for custom rendering including custom colors, directional

7

arrows and context drawings. GeoTIFF has the ability to either give the initial GeoTIFF
raster data or make it more comprehensible to users using these custom renderings.
This is a nice addition to GUI allowing the users to decide what kind of information they
would like to see.

In terms of implementability and maintainability, the given plugin can easily be
installed using npm install giving open access to all the written classes needed to use
for rendering and displaying a given GeoTIFF asset. This plugin also has a very
thorough guide on GitHub with examples to fully walk you through on how to implement
the GeoRaster layer for Leaflet plugin. This plugin is open source on both GitHub and
npmjs.com. This has been contributed to recently in the last month since looking at it,
making it version 3.4.0 on both GitHub and npmjs.com. It has also had an open talk
about the plugin on 9/30/2021 talking about the new features that have been installed.
This plugin seems to get new updates continuously with people continuously working on
this open source project. Overall the GeoRaster specifics that were found are:

● Features: Original TIFF image, custom colored or with arrows of raster
data, fast rendering, not relying on a server

● Scalability: Yes
● Documentation: 5 Examples, Step by Step guide for use
● Maintainability: Updated to Version 3.4.0 on 9/30/2021

3.1.2 Summary

Plugin Features Scalability Documenta
tion

Maintainabil
ity

Total

Leaflet
GeoTIFF-2

3 5 2 5 15/20

GeoRaster
Layer for Leaflet

5 5 5 5 20/20

Table 1: Analysis Results for Rendering GeoTIFFs in Leaflet

In order to compare the two different plugins for rendering GeoTIFFs inside of
Leaflet, they were ranked on a 1-5 scale. On this scale 1 would be the worst and 5
would be the best. As seen above in Table 1, both the plugins have close ranking
scores. They both have the ability to render multiple GeoTIFFs inside of one given
Leaflet. They have both been maintained and updated recently and seem to have
continued support. Ultimately, the GeoRaster layer for Leaflet is a better choice because
it slightly edges out the competition of Leaflet GeoTIFF-2 plugin. GeoRaster has more

8

features allowing to make the same customizability that GeoTIFF-2 plugin allows with
displaying the raster data from the GeoTIFF image with different colors or arrows.
GeoRaster takes it one step further by allowing the original GeoTIFF image to be
displayed inside of the Leaflet as a layer that can be hidden away or brought forward if
selected. Also, as seen above GeoRaster has a more comprehensive guide when it
comes to implementing the plugin into the existing CartoCosmo Leaflet. To further test
these solutions, GeoSTAC will be creating multiple test Leaflets with known good maps
of places on Earth. These demos will be given to the clients to make sure they are
meeting the expectations of how the GUI should handle rendering of the GeoTIFFs.

3.2 Search Images Functionality

With innumerable images and data sets available in the STAC database, the goal
is to provide a convenient way for users to search for images that contain or match
specific input data. To do this, the team will be using various search driven plug-ins that
are supported natively by Leaflet. By searching the input data and matching those
parameters to metadata from the STAC items, the goal is to display the corresponding
image(s) to the user via the Leaflet engine.

The desired characteristics with image search functionality is to be able to
display various locations of interest. Visualizing these locations will be based on the
metadata of the corresponding STAC item of the image. A key characteristic of this
functionality is allowing the user to input specific data about a location or feature they
would like to view. Taking in this data would then allow parsing the STAC items to find
correlations between the input data and metadata thus displaying the correlating
image(s) to the user.

3.2.1 Candidates:

The plugins that are candidates for the search functionality in Leaflet are: Leaflet
GeoJSON Autocomplete, Leaflet Underneath, Leaflet Search and Leaflet Fuse Search.
Each section provides a detailed analysis of each plugin in terms of what searching
capabilities each provides and describes how they match with specifications needed for
this product.

9

Leaflet GeoJSON Autocomplete

Leaflet GeoJSON Autocomplete provides a structured autocomplete service for
searching GeoJSON’s. With this plugin, the search engine for searching for specific
metadata within a STAC item will provide autocomplete suggestions for the user
requiring them to only know part of the data they would like to view. This is useful as a
user may only know part’s and pieces of information they would like to search and this
is where Leaflet GeoJSON will assist the user in suggesting similar/matching search
results.

Leaflet Underneath

Leaflet Underneath provides a functionally structured search. This plugin can be
structured on the backend providing a seamless and automated search upon a user
request. It can also be structured for a GUI experience, allowing the user to click
through various options to display specific footprints that match the search results from
the metadata.

Leaflet Search and Leaflet Fuse Search

Alternatively to the plugins listed above, Leaflet Search can be used in
conjunction with Leaflet Fuse search. Using Leaflet Search and Leaflet Fuse Search
would provide another path to implement image search functionality.

● Leaflet Search
○ Leaflet Search is a npm package that provides control for marking specific

points on a map. This plugin functionally searches for custom properties
within the metadata of a layer group or GeoJSON, then displays a point
for the location of those custom properties.

● Leaflet Fuse Search
○ Leaflet Fuse provides a GUI panel for users to visually mark locations on a

map that contain set features defined by their respective GeoJSON.
Leaflet Fuse will allow for display points of interest that are predefined
within the metadata of the STAC items.

With the combination of using Leaflet Search and Leaflet Fuse Search to develop
image search functionality, this will provide the user with individual STAC items that
match the given criteria of the image search While Leaflet Search is good for providing
custom metadata property searches, it lacks in providing a easy interface for user

10

queries. This is where Leaflet Fuse Search comes in to provide a driver for the user
interaction with custom metadata search requests.

Ideally, by using a combination of these plugins into the product, this will allow
users to search for specific data in the STAC catalog. This will then pull the relevant
individual STAC items that contain matching metadata with the input request from the
user. With the correlating STAC items that pertain to the user's search, the Leaflet map
will display the image that matches the requested search.

3.2.2 Summary:

After reviewing these plugins further, it was clear that two of these plugins
aligned with the project’s needs more than the others. The built in functionality of Leaflet
GeoJson Autocomplete provides support for matching part or all of a user’s input with
custom properties contained in a STAC item’s metadata, which then the information can
then pass to Leaflet Underneath. Once the information has been passed to Leaflet
Underneath this will allow for a full structured search of the input data across every
STAC item contained in any given STAC catalog. Leaflet Underneath provides two
unique ways of searching for this data:

1. Being fully autonomous to the user and relying on the back end logic to
find the relevant footprints and the other

2. Being a GUI interface that allows the user to be more engaged with the
selection of the various data matching footprints.

With these two plugins working together the team will have the structure needed to
implement image search functionality into the product.

When testing the functionality of each of these plugins both offered functional
support to implement the functionality of image searching based on metadata into the
product. The Leaflet GeoJSON plugin was not only able to autocomplete the partial
search query, it also gave various suggestions for possible searches based on the
provided input. Overall, the Leaflet GeoJSON plugin meets the expectations set for
searching through metadata to match a partial or full search query.

The testing of the Leaflet Underneath plugin showed that this plugin is capable of
searching though the images on a map and providing correlating data to the user once
a footprint is interacted with. With the Leaflet GeoJSON plugin doing all of the leg work

11

for structuring these searches, Leaflet Underneath will then be able to take this data in
and display requested data to the user represented on any given footprints.

3.3 GeoJSON Tile Layer in Leaflet

GeoJSON is the data format the team will be utilizing from the STAC catalog,
specifically a STAC Item. The geometries within a GeoJSON’s feature object provide
image polygon coordinates. A Tile Layer will be needed to plot these polygons over an
existing image layer. For example, the Leaflet map CartoCosmos, has mosaic image
layers for different target bodies in the solar system. The goal is to then add an
additional GeoJSON tile layer over the existing mosaic layer that provides the image
polygons pertaining to a particular planetary mission of that target body. This section will
go into the specifics of what existing Leaflet plugins can utilize to meet the needs to
overlay these STAC item image polygons.

The metrics the team will use to determine which tile layer plugin best fits the
team’s needs are:

● Ease of Use
● Maintainability
● Visual Appeal
● User Interactivity

These metrics will allow the team to quantitatively determine how to resolve the
GeoJSON tile layer issues the most effectively. The team is looking for ease of use in
which the user interface is easy to use and understand. This can be determined by
simple tool options and minimal buttons. The team is also looking for maintainability. It is
ideal to find a plugin that is regularly maintained or open sourced so that future
maintainers of CartoCosmos can keep the Leaflet application relevant. The team also
would like to ensure that the tile layer has a visual appeal. Since this project is front-end
focused, visual aspects play an important role in the use of the CartoCosmos
application. Therefore, the goal is to have a tile layer that has a good visual
representation of polygons and text. Finally the team is looking for an interactive
component. This includes the ability to have adaptive polygon lines that change size
when zooming into the tile layer. The team also would like to have the ability for
polygons to be highlighted when hovering to indicate the ability to select and view
information.

12

3.3.1 Candidates

The team has narrowed down three possible plugin candidates for solving the
GeoJSON tile layer issue. There were a few plugins that could not be considered due to
their limitations of relying on an older version of Leaflet. Other plugins did not meet the
needs due to the incompatibility with the GeoJSON format.

The following solution subsections will focus on the specifics of what each plugin
provides in terms of usability, maintenance, visual appeal, and user interactivity.

Leaflet.VectorGrid

Leaflet.VectorGrid is an official Leaflet plugin that is provided on the Leaflet Library
website. This plugin was originally created by Iván Sánchez who has created various
official Leaflet plugins. The Leaflet.VectorGrid plugin was created due to Leaflet version
1.0.0 update making vectors incompatible with current implementations of load vector
tiles. This plugin displays gridded vector data using GeoJSON data. The benefit of using
vector tiling is that the vectors are adaptable to zooming. This is because vectors
rescale as the user zooms closer to the vector lines. This is beneficial for user visibility
and allows for a smoother zooming experience for the user. The rendering of vector
tiling is also faster than typical raster tiling.

As you can see in Figure 3.1, this plugin has the feature of highlighting the polygons
when hovering over the tile. It also has the option of displaying a bubble of quick
information for the user. The coloring of the lines provides a visual appeal of allowing
the user to easily differentiate what polygons they are selecting.

In terms of maintainability, the plugin is open source but the Github site for this
plugin has not seen any contributors commit in over a year with various pending pull
requests. This is indicating that the maintainer has not been completely active with this
repository. With that being said, there are loose copyright restrictions and the maintainer
states that this plugin can be used in any way.

13

Figure 3.1: VectorGrid Layer for Leaflet Plugin Example

Leaflet-tilelayer-geojson

This plugin is also an official Leaflet plugin that is provided on the Leaflet Library
website. This plugin is maintained by Glen Robertson on a Github repository. This
plugin renders GeoJSON on the L.GeoJSON layer in Leaflet. Unlike the
Leaflet.VectorGrid rendering vector tiles, this plugin renders raster tiles. This means that
the loading time is slower and not as adaptable to user zooming. The positive side to
raster tiles is they are more readily maintained and have better support in Javascript
libraries.

In terms of interactivity, this plugin includes the options of hovering, clickability, and
the ability to add colors to the polygons. There is also the pop up feature in which key
descriptions are displayed to the user when clicking a particular polygon.

This plugin has not been updated since 2016. Alongside this, there are few pending
issues and no pending pull requests on it’s Github. This could be an indicator that the
plugin is stable and has limited bugs. This could also be that there are limitations for
improvement. This plugin is currently in use in over a dozen Github repositories and is
open to contributors. Therefore, there is promise of a reliable and functioning plugin.

Leaflet.GeoJSON.Encoded

This plugin is also an official Leaflet plugin that is provided on the Leaflet Library
website. This plugin is maintained by geobricks on a Github repository. This plugin is an
extension to the L.GeoJSON layer by utilizing Google’s polyline encoding algorithm.
This means that the data transfer is optimized using this algorithm. Like the

14

Leaflet-tilelayer-geojson plugin, this plugin renders raster tiles. This means there is a
slower and non-adaptable zooming capabilities.

The maintainability for this plugin is limited. The last update to this plugin was in
2015. There are no known users of this plugin based on Github. This could be an
indicator that this plugin is stable with no need for modifications. This could also be an
indicator that this plugin is limited in being able to improve. The licensing indicates that
this plugin can be used with minimal restrictions.

The plugin is limited on features that include interactivity or visuals. As seen in
Figure 3.2, the visualization of the polygons are standard and do include a description
bubble when selected. This could be beneficial if the team decides to use standard
styling for coloring polygons or utilizing hovering . The standard methods for these
styling options are available within the Leaflet API therefore this option could be ideal for
limiting the functionality that is relying on a plugin.

Figure 3.2: GeoJSON.Encoded Layer for Leaflet Plugin Example

3.3.2 Summary

Plugin Ease of
Use

Visual
Appeal

User
Interactivity

Maintainability Total

Leaflet.VectorGrid 5 5 5 4 19/20

Leaflet-tilelayer-
geojson

3 3 3 2 11/20

Leaflet.GeoJSON.
Encoded

1 1 1 2 5/20

15

Table 2: Analysis Results for GeoJSON Tile Layers in Leaflet

The analysis in Table 2 provides a synopsis of the three potential GeoJSON tile
layer plugins and how they rank in terms of ease of use, visual appeal, user interactivity,
and maintainability. The Leaflet.VectorGrid plugin was the only plugin to meet all of the
desired criteria. Vector polygons provide the zooming adaptiveness and rendering
speed that was not possible in the other two raster plugin implementations. This plugin
also is being maintained more frequently with a much more prominent Github
community. Therefore the team has chosen the Leaflet.VectorGrid plugin as the choice
for solving the GeoJSON tiling layer issue within Leaflet.

3.4 Selection Tools in Leaflet

Users of the application will need to select an area to examine data within. Since
the client’s major requirement is the use of Leaflet, this section will examine Leaflet
plugins that provide selection tools. There are four potential selection shapes that can
be utilized to let the user graphically select an area including: a point, a rectangle, a
polygon, and a lasso.

3.4.1 Candidates

Leaflet-locationfilter

The Leaflet-location filter plugin utilizes a rectangular selection shape for
searching within a Leaflet map. It has the unique feature of being able to select the
whole visible screen with one click. The plugin has not been updated since 2014, which
could be an indicator that this plugin is not regularly maintained.

16

Leaflet-Shades

The Leaflet-Shades plugin utilizes a simple rectangular selection as well. It
doesn’t include many extra features, unlike some of the other plugins examined. It is,
however, reasonably up to date in terms of maintainability.

17

Leaflet.FeatureSelect

The Leaflet.FeatureSelect plugin uses a single selection point in the middle of the
screen for searching within Leaflet. While this is inflexible in some ways, it has the
advantage of being easy to use on mobile screens. This plugin also has built-in
GeoJSON compatibility.

Leaflet.SelectAreaFeature

The Leaflet.SelectAreaFeature plugin uses a free polygon selection shape for searching
within Leaflet. One of the advantages of this plugin is the ability to draw multiple
polygons on the Leaflet map.

18

Leaflet-lasso

The Leaflet-lasso plugin utilizes a free polygon selection shape similar to the
Leaflet.SelectAreaFeature. It can be set to select all shapes it interacts with, or the
selection can be narrowed to only the shapes completely contained within the outline.

3.3.2 Summary

Plugin Shape
flexibility

Visual
Appeal

Mobile
Friendly

Selection
Support

Ease of
Use

Total Score

Leaflet-locationfilter 3 2 1 3 3 12/20

Leaflet-Shades 2 3 1 2 2 10/20

Leaflet.FeatureSelect 1 1 5 4 2 13/20

Leaflet.SelectAreaFeature 5 5 1 2 3 16/20

leaflet-lasso 4 3 1 4 5 17/20

Table 3: Analysis Results for Selection Tools in Leaflet

It would be ideal to be able to draw a lasso for selection, since different users
would likely be interested in particular areas that don’t necessarily conform to a
rectangular shape. A point selection would not allow the user to specify a broad area of
the map, but may be useful if the user wants to select one specific footprint.

The leaflet-lasso plugin is closest to the original design plan. With leaflet lasso,
the user can draw an outline around the area of interest, and then see all the data
features in that area. A helpful feature of leaflet-lasso is that it can be set to select only

19

fully-contained objects, or any objects the lasso intersects. The only drawback of this
plugin is that it does not have built-in support for GeoJSON.

A good second choice would be the Leaflet.FeatureSelect plugin. Using a point
for selection was not originally considered, but has its advantages of being
mobile-friendly as well as providing GeoJSON support.

4 Technology Integration
With the constraints of this project, the overall success for development will be

judged by how the team implements each technological solution, as well as how these
solutions link together. The requirements of this project include, using Javascript with
Leaflet for translating individual STAC items into an interactive map that is capable of
displaying individual images and image catalogs. With these requirements, there are
specific key problems that the team must overcome. These problems must be solved in
the development phase of this project in order to be successful. These problems
include:

● Ability to visually display single images (or catalogs)
● Ability to display corresponding metadata to any given image
● Integrating a new standard of using STAC catalogs to display imagery
● Ability to select individual polygons that are represented on STAC catalogs
● Ability to load polygons independently for viewing

With these problems being so closely related on a functionality level, there will be
a need to develop support for these features with the plugins and tools discussed
previously in this document. Once these features are developed and integrated with the
previous project CartoCosmos, the end product will be a planetary map powered by
Leaflet with all of the functionality of CartoCosmos with the new capabilities of:

● Visually displaying single image catalog items
● Visually displaying GeoTIFF imagery from STAC items
● Individual polygon selection of STAC items represented on the map
● Ability to render individually selected polygons for viewing

20

Diagram 1: GeoSTAC Interactive Map System

GeoSTAC’s Interactive Map system will be composed with four main
components: Leaflet, JavaScript, a STAC catalog, and CartoCosmos. The STAC catalog
will contain all of the physical data needed to provide a scientific accurate interactive
map. This data is grouped together in individual STAC items that are mainly constructed
with a GeoJSON, and GeoTIFF image file. This STAC catalog will then be passed to
Leaflet for processing. With the new feature integration working alongside the existing
CartoCosmos project , specialized feature functionality will be supported allowing users
to view and select individual polygon items represented by their respective GeoJSON
bonds.

5 Conclusion
In conclusion, these proposed features to the CartoCosmos Leaflet map viewer

will provide the planetary science community with access to visualize the STAC catalog
of analysis ready planetary images. These features will ease the burden of processing,
downloading, and storing planetary images alongside providing a user-friendly interface
for quick access of data for scientific research. Throughout this document, the team has
thoroughly researched the best tools that meet the needs of the client. The summary of
solutions for each technical challenge is outlined in Table 4. This table shows each of

21

the technical challenges for this project and the associated solution. These challenges
include:

● Rendering a GeoTIFF image within CartoCosmos
● The ability to search for specific images
● The ability to overlay a tile layer for displaying footprint information
● The ability to select various footprints to provide visual data to the user

The team is confident that the selected tools will improve the existing
CartoCosmos Leaflet interface and satisfy the clients overall vision for this project.

Technical Challenge Solution

Rendering GeoTIFF in Leaflet GeoRaster Layer for Leaflet

Search Images Functionality Leaflet GeoJSON Autocomplete,
Leaflet Underneath

GeoJSON Tile Layer to Leaflet Leaflet.VectorGrid

Selection Tools in Leaflet Leaflet-lasso

Table 4: Solutions Summary

6 References

CSIRO Oceans and Atmosphere - Coastal Informatics Team. (2017). GitHub -

onaci/leaflet-geotiff-2: Leaflet plugin for displaying geoTIFF raster data. GitHub.

https://github.com/onaci/leaflet-geotiff-2

Dunbar, B. (2009). NASA - How Big is Our Universe? NASA.

https://www.nasa.gov/audience/foreducators/5-8/features/F_How_Big_is_Our_Universe.

html

Cudini, S. (2012). GitHub - stefanocudini/leaflet-search: Search stuff in a Leaflet map. GitHub.

https://github.com/stefanocudini/leaflet-search

22

GeoTIFF. (2017). GitHub - GeoTIFF/georaster-layer-for-leaflet: Display GeoTIFFs and soon

other types of raster on your Leaflet Map. GitHub.

https://github.com/GeoTIFF/georaster-layer-for-leaflet

Kong, M. (2017). GitHub - mkong0216/leaflet-shades: Leaflet plugin for creating gray overlay in

unselected areas and transparent overlay for selected area. GitHub.

https://github.com/mkong0216/leaflet-shades

Leaflet. (2016). GitHub - Leaflet/Leaflet.VectorGrid: Display gridded vector data (sliced

GeoJSON or protobuf vector tiles) in Leaflet 1.0.0. GitHub.

https://github.com/Leaflet/Leaflet.VectorGrid

Liedman, P. (2016). GitHub - perliedman/leaflet-underneath: Find interesting features is in your

map using Mapbox Vector Tiles data. GitHub.

https://github.com/perliedman/leaflet-underneath

OpenPlans. (2013). GitHub - openplans/Leaflet.FeatureSelect: Leaflet plugin for precise feature

selection. GitHub. https://github.com/openplans/Leaflet.FeatureSelect

Özkaya, Y. (2015). GitHub - utahemre/Leaflet.GeoJSONAutocomplete: Leaflet Search Bar For

Remote Searching with GeoJSON Services. GitHub.

https://github.com/utahemre/Leaflet.GeoJSONAutocomplete

Pibia, S. (2017). GitHub - sandropibia/Leaflet.SelectAreaFeature: Plugin that selects feature(s)

by drawing an area on the map. GitHub.

https://github.com/sandropibia/Leaflet.SelectAreaFeature

Plugins - Leaflet - a JavaScript library for interactive maps. (n.d.). LeafletJs.

https://leafletjs.com/plugins.html

Riche, A. (2014). GitHub - naomap/leaflet-fusesearch: A plugin for Leaflet to search features in

a GeoJSON layer using Fuse.js. GitHub. https://github.com/naomap/leaflet-fusesearch

23

Robertson, G. (2012). GitHub - glenrobertson/leaflet-tilelayer-geojson: Leaflet TileLayer for

GeoJSON tiles. GitHub. https://github.com/glenrobertson/leaflet-tilelayer-geojson

ŽáK, J. (2018). GitHub - zakjan/leaflet-lasso: Lasso selection plugin for Leaflet. GitHub.

https://github.com/zakjan/leaflet-lasso

24

