
Software Test Plan

4/01/2022

GeoSTAC

Sponsor:
United States Geological Survey (USGS)

Astrogeology Science Center

Mentor: Melissa Rose

Team Members:
Jacob Cain

Zachary Kaufman
Gavin Nelson
Amy Stamile

Version 1.0

Table of Contents

Table of Contents 1

1 Introduction 2

2 Unit Testing 3
2.1 Astro 3

2.1.1 AstroMap 4
2.1.2 ApiJsonCollection 4
2.1.3 AstroDrawControl 5
2.1.4 GeoTiffViewer 5

3 Integration Testing 6
3.1 Integration Testing 6
3.2 Contract Testing 7

4 Usability Testing 8
4.1 Testing Existing CartoCosmos Usability 8
4.2 Testing STAC Footprint Filtering Usability 9

5 Conclusion 10

1

1 Introduction
The USGS Astrogeology Science Center serves data using a community

developed standard to the planetary science community to access Analysis Ready Data
(ARD). USGS has already distributed this analysis ready data through the Spatial
Temporal Asset Catalog (STAC). STAC is a standard for storing, discovering, and
analyzing spatial-temporal data to describe various geospatial information. This
provides better indexing and discovering of the analysis ready data1.

In 2019, the USGS assigned an NAU capstone team to develop an interactive
web map that supports planetary data. The web map is called CartoCosmos, reflecting
the capstone team’s name. The CartoCosmos team developed a plugin extension for
Leaflet, an open source Javascript library for interactive maps. This plugin extension
was developed to support mapping of planetary data sets.2 The CartoCosmos web map
is great for visualizing large planetary image mosaics, but has no support for visualizing
the individual STAC assets or STAC catalogs the clients wish to make available.

The overall vision for this project is to have the existing CartoCosmos web map
display a certain number of footprints for specified planetary bodies. These footprints
will be interactive: The user will be able to individually click a footprint and display the
information associated with it. The user will have the option to view the cloud optimized
geotiff image associated with the footprint. In addition, the user will be able to select
multiple footprints. This will display a table of available footprints of the selected area
and allow the user to select a footprint based on the table. Finally, the user will be able
to use a filtering tool that will allow them to search within the existing rendered footprints
to display only the footprints associated with the information searched.

The following sections discuss in detail how this project plans to be tested. In
order to provide through testing, this document splits the testing into three categories:

- Unit Testing
- Integration Testing
- Usability Testing

The unit testing discusses how each function or method is being individually
tested and testing metrics associated with each unit test. The integration testing section
discusses the testing of integration between the web application and the STAC API.
This goes into details of testing this integration through contract testing. The final

2 https://ceias.nau.edu/capstone/projects/CS/2020/CartoCosmos-S20/#/
1 https://stacspec.org/

2

section is usability testing. This section discusses in detail how testing will be
administered to specific user groups and how each test will be measured.

2 Unit Testing
Unit testing is used to ensure that the code from individual functions of a piece of

software are working correctly. Unit testing will help to detect and protect against any
bugs that could arise in the future. A lot of unit tests are very simple that only require
input and output verification. Although, other unit tests are used to test creation of
objects and ensure the object contains the correct information. Since this project is built
on top of an already pre existing capstone project, CartoCosmos there are already
existing testing components for each of their separate modules (Leaflet, Jupyter
Notebook, and Autocomplete). Since this project only updated the Leaflet module, this
test plan focuses on updating that particular module. The plan is to create two different
testing plans for inside the app, the React components and JavaScript components.

In order to test the newly updated Leaflet module, the following testing
frameworks will be used: Jest, React Testing Library, and Mocha. This is to keep the
testing components consistent with the existing testing frameworks that CartoCosmos
used in their initial tests. Jest and React Testing Library will both be used to ensure the
creation of our GUI components since it is written using React. Jest is a JavaScript test
runner that allows access to the DOM using jsdom. React Testing Library is a set of
helper functions that allows the user to test React components without relying on their
implementation details. The main JavaScript code will be tested using Mocha. Mocha.js
is an open-source JavaScript test framework that runs on Node.js and in the browser, it
was designed for testing both synchronous and asynchronous code with a simple
interface.

2.1 Astro
The Astro Module is responsible for the entire back-end functionality of the

GeoSTAC planetary map. This module was originally created by CartoCosmos to call
the USGS GeoServer, create the Leaflet map, and add support for changing projections
and lat/lon settings. The team will be creating tests for only new classes and functions
that we created inside of the already existing classes. The module contains a mixture of
classes inherited from Leaflet classes and normal JavaScript classes and continues to
follow CartoCosmos object-oriented paradigm. Every new class and function will have
its own Mocha testing code. This will ensure every new class and function works in its
intentional way.

3

2.1.1 AstroMap
AstroMap is the main class of the module and utilizes the other classes

described below. It inherits functionality from L.Map and is used the same way as its
parent class. The team updated the AstroMap class to load a layer of footprints
gathered from the USGS STAC API onto the already existing CartoCosmos planetary
map. This class imports functionality from the NPM staclayer and class
ApiJsonCollection in order to get the data from STAC API and display it on planetary
map. The Mocha unit test for this class are described below:

Unit Test Purpose Sample Input Expected Output

Loaded Footprint
Layer

Test the creation of the
footprint layer on the
Leaflet Map

“Mars, ?page=1“
“MARS, ?page=1”
“mars, ?page=1”

Instantiate a map with
Mars and a single page
of loaded footprints and
an AstroMap object
without errors.

Loads GeoTiff
thumbnail from
user click

Test the loading of
GeoTiff thumbnail on
Leaflet map

GeoJSON Input is non-null object
and loaded GeoTiff
thumbnail on Leaflet with
no objection errors

2.1.2 ApiJsonCollection
The ApiJsonCollection class handles the call to the STAC API to receive a JSON

result in GeoJSON format and GeoTIFF assets to be displayed on the plantery map.
The parameters inside the GeoJSON consists of URLs to the different GeoTIFF assets
and metadata for the GeoTIFF. The class also handles storing and controlling the
number of features that are displayed on the map using a pagination system. The
Mocha unit tests for this class are described below:

Unit Test Purpose Sample Input Expected Output

Collect item
collection from
API call

Test the ability to call the
STAC API and retrieve
the JSON

“Mars, ?page=1“
“MARS, ?page=1”
“mars, ?page=1”

An non empty JSON
object

Set and retrieve
the max number
of pages possible

Test the ability to set and
retrieve the max number
of page possible

An array of features An array of GeoJSON
objects

4

Set and retrieve
the value of the
number of
footprints

Test the ability to set and
retrieve the value of the
return number of
footprints

An integer greater
than 0

The same number as
inputted: An integer
greater than 0

Set and retrieve
the max number
of pages

Test the ability to set and
retrieve the max number
of pages possible

An integer greater
than 0

The same number as
inputted: An integer
greater than 0

Set and retrieve
the current page
number showing

Test the ability to set and
retrieve the current page
number showing

An integer greater
than 0

The same number as
inputted: An integer
greater than 0

2.1.3 AstroDrawControl
The Astro Draw Control class handles the back-end when a user draws on the Leaflet

web map. Since the class inherits L.Control, it is added to the AstroMap in the same way as
other controls, like the zoom control. The class also handles STAC query searching and auto
populating the query box on the app GUI. The Mocha unit test for this class are described
below:

Unit Test Purpose Sample Input Expected Output

Add draw
controls to the
provided map

Test the ability to add
the control to AstroMap
object

AstroMap Object An AstroMap object with
Layer Control attached
with no errors.

Renders all
footprints inside
user drawn shape

Test the ability to load
the footprints that
intersect the drawn
area

A string with the
drawn shape’s
coordinates

A non null String object

2.1.4 GeoTiffViewer
The GeoTIFF Viewer class is used to display a pop-up with a given GeoTIFF

assets thumbnail and meta-data displayed to the user. The class creates a modal object
inside of the app’s HTML div tag and then moves the blurs out the planetary map in the
background. The GeoTIFF asset thumbnail is updated when a user clicks on a different
footprint from the search results container. The Mocha unit test for this class are
described below:

Unit Test Purpose Sample Input Expected Output

Creates the Test the ability to String object with An instantiate modal and

5

modal pop-up
inside the app div

create a modal pop-up
for the GeoTIFF viewer

the name of the
image div

the methods return true

Display the
GeoTIFF
thumbnail to the
user

Test the ability to
display a given
GeoTIFF url to the user

String with a given
GeoTIFF thumbnail
URL

Non-null DOM object

3 Integration Testing

Integration testing is a vital key part in this testing plan. Integration testing will
ensure that every individual component of the project is working as intended and each
module is interacting with and delivering the correct data to and from other modules.
Along with being able to ensure that the modules and datasets are functioning properly,
the team will also test and monitor the application’s interactions with the STAC API. As
for the implementation plan for integration testing, the plan is to build off of the existing
testing framework that CartoCosmos provides. This will allow the team to utilize the
powerful testing frameworks that CartoCosmos chose such as Mocha.js. Along with
building off of the existing testing frameworks that CartoCosmos has provided, the team
will be implementing Contract Testing to test the integration of using the STAC API
within the application.

For each modular part within our system, an outline for each integration test will
be provided as well as each Contract test that will be carried out. These outlines will
encompass all of the individual components involved, along the expected output
ensuring that the testing verifies all interactions within the application as expected.

3.1 Integration Testing
The integration tests that are listed below in this section will allow us to test

different parts from different modules to ensure that the system is working together
properly. The table below will show a designated input or action to be carried out within
the GeoSTAC system and the expected output/outcome of the action. Each section
listed is essential to test in order to provide a well functioning application to our users.

Input/Action Expected Output/Outcome

6

Create and add a layer collection to the Astro
Map.

The existing map will have new layers added
to it.

Apply a Selected Area filter and apply it. Have only footprints in the selected area be
displayed on the map and in the results.

Filter footprints by a date range. Have only footprints in the selected date
range be displayed on the map and in the

results.

Apply any search filter. The Query Console will display the correct
query string.

Clear the sort and filter menu. The map will reset all footprints.

3.2 Contract Testing

The use of contract testing plays a key part in testing this application. With the
use of an API to gather the STAC items of the scientific data to drive this application, it’s
critically important to verify that the data is successfully being retrieved. Below are
outlines of interactions that will be tested between the GeoSTAC application and the
STAC API. These tests or “interactions” will have a trigger event and an expected
response or outcome. The purpose of implementing contract testing is not to test the
STAC API itself or the GeoSTAC application, but to test the interactions and
transmission of data between the two.

Event/Trigger Expected response/outcome

Query API to filter footprints being returned. Receive a smaller subset of footprints that
correlate with the imputed filter.

Query the API for a GET/stac command Receive the root STAC Catalog as a whole.

Filter footprints via bbox parameters (area of
interest)

Have a list of footprints that only intersect
with the selected area in any form.

Query the API for multiple filters at once. Receive a subset of footprints that match up
to numerous filter parameters.

7

4 Usability Testing

A large component of this web application is the usability on the frontend user
interface. Therefore usability testing is essential to ensuring that the interface is easy to
understand and maneuver. Since this web application will be open to the public and
accessible by a wide range of user types, there will be user groups both within USGS
and also general users outside USGS. Both groups will have a generalized set of
instructions. These instructions will be provided in a Google form. Each step will be
requested to be ranked 1 through 5 based on difficulty of completing each task. Each
task will also have an option to apply comments or suggestions and specify any bugs
potentially encountered.

There will be two sections of the usability test. First will be steps for interacting
with the web map including using existing CartoCosmos functionality. The second
section is steps for interacting with the footprint filter section and interaction with the
footprint results. These two sections will help the team separate potential existing
functionality changes and changes with new updates that are specific to the footprints.
The following subsections will go into further details of what steps will be provided to the
users for testing.

4.1 Testing Existing CartoCosmos Usability

Since this web application utilizes existing functionality from CartoCosmos,
testing these functionalities will ensure that the usability is maintained. Some of the
previous functionality was removed to provide simplicity to the modified application. This
was largely due to some functionality no longer being needed for the STAC API
interaction. So this testing is also useful for some users that have had previous
experience with the older version of CartoCosmos. The following table provides each
task that will be presented for user testing along with the expected outcomes:

User Tasks Expected Outcome

Have the user access the deployed web app
at:
https://geostac.github.io/CartoCosmos-with-S
TAC/

Expect no issues with accessing the site. If
there were issues with accessing this site, the
user testing would end with this task.

Have the user select Mars as the Target Body The expected outcome is that the user will

8

https://geostac.github.io/CartoCosmos-with-STAC/
https://geostac.github.io/CartoCosmos-with-STAC/

(This is the default target). figure out that when initially accessing the
github.io site, that Mars is the default body.
This test will see if there are any confusions
with that body that is currently selected.

Have the user change the base map of Mars
to THEMIS IR Day.

The user will be able to identify where the
layers button exists on the map and be able
to change the layer in the toggle section.

Have the user recenter the map by using the
Leaflet utility buttons.

The expected result is that the user will be
able to find the button with the dot and arrows
pointing at the dot and determine this is the
centering button.

Have the user hover their mouse over the
map and see coordinates.

The expected result is the user can see
latitude and longitude boxes change
according to the mouse movements.

Have the user zoom in and out of the map. The expected result is that the user can either
zoom in with a mouse scroll or use the plus
and minus buttons within the Leaflet utility
buttons.

4.2 Testing STAC Footprint Filtering Usability

This section of the usability testing focuses on the new features implemented for
interacting with the STAC API filtering and the rendered footprints. The following table
outlines each task presented to the user alongside the expected outcome for each task:

User Tasks Expected Outcome

Have the user find the section of the Mars
map that is displaying footprints. Have the
user click a footprint to display the image.
Have the user click the footprint again to
remove the image.

The expected result is the user can view
images within the webmap.

Have the user click the bounding box
selection tool and make a selection around
the section of existing footprints. Then have
the user click the “Selected Area” box in the
filter panel and click “Apply”.

The user should then see new rendered
results based on bounding box selection. This
also should show a results panel of the
associated footprint information from the
STAC API.

Have the user type in specific dates and click
“Apply”.

Have a specific number of footprint results
appear based on the date entered.

9

Have the user open the Query Console and
click “Copy Code”

The user should be able to paste the link into
a browser or terminal.

Have the user toggle on and off the mission
specific footprint collection layer.

The user will be able to see the footprint
display disappear when toggling this button.

5 Conclusion
As the need for accurate planetary data and images increases for the scientific

and academic community, it is more important than ever that there is software to easily
access this data. The USGS Astrogeology Science Center in Flagstaff Arizona provides
the international planetary science community with new knowledge of our solar system.
Without this data, new planetary exploration missions would be nearly impossible.

Now that the team has completed all of the major requirements for this project,
the next step is to implement the testing plan mentioned above. This includes adding
unit tests within the existing testing framework structure provided by CartoCosmos. This
includes utilizing Jest, React Testing Library, and Mocha libraries for these unit tests.
The integration tests will test the interactions between modules and contract tests will
be used for testing the interaction with the STAC API. Finally, usability testing will be
implemented through Google forms, administered to both internal USGS users as well
as outside users. Both groups will be given the same set of instructions with a ranking of
difficulty between 1-5. These tests will both ensure that the code base established is
maintained when future updates are made and also ensure that the usability is
consistent with a wide variety of users.

10

