
Team Ceres
Final Report

April 28, 2021

Sponsored By: David Trilling, Michael Gowanlock
Team Mentor: Fabio Santos

Team Members: Javier Quintana, Joseph Sirna, Miles Barrios, Zach Messenger

Table of Contents

Introduction --- 3

Process Overview --- 4

Requirements --- 5

Architecture and Implementation ---------------------------------- 12

Testing --- 15

Project Timeline -- 23

Future Work -- 25

Conclusion --- 26

Glossary --- 27

Appendix -- 28

1. Introduction
The purpose of this document is to outline the process that Team Ceres has taken in the

development of the Zwicky Transient Facility Asteroid Analysis Tool (ZAAT). This

document will serve as the team’s final report and will reiterate much of the

development process that we have taken to build our client’s product. The ZAAT will be

explained in detail as you progress through the document and a better explanation of

the team’s timeline will be written out to provide a clear narrative of what has been done

and what can still be done to improve the ZAAT.

Background
Every night astronomers across the globe participate in all-sky surveys, where the night

sky is recorded in hopes to gain knowledge of the galactic entities that surround the

Earth. These surveys can produce very large quantities of data and are useful for

cataloging notable bodies, such as asteroids. The Zwicky Transient Facility (ZTF) in San

Diego, California generates nearly 2 terabytes of data every night and that data alone is

very difficult to examine due to the high rate that data is collected.

It is estimated that when the Vera C. Rubin Observatory is finished being built in 2021,

20 terabytes of data will be collected every night for the next 10 years. By the end of the

Rubin Observatory’s participation in these all-sky surveys, 73 petabytes of data will

have been collected.

Our clients, Professor David Trilling and Professor Michael Gowanlock, are interested in

using this data for their personal research but many of the interfaces that use data from

the ZTF, are either outdated or not user friendly. The main problem that our clients faced

however, is that they had no interface available to them with functionality that is user

friendly and easy to navigate. Because of this, Professor Trilling and Professor

Gowanlock were interested in the development of a new interface that uses data from

the ZTF and provides easy to access data that doesn’t overwhelm its users on first view.

Team Ceres goal was to create this graphical user interface and to create it with all of

the requested accommodations to make it a valuable tool for our sponsors.

Current Standing
As it stands now, the team has developed a new asteroid analysis interface that will

save our clients from having to access the ZTF data manually and will visualize the data

for them. The interface has been named the ZTF Asteroid Analysis Tool and is in the

form of a web application so users can easily access the information from anywhere

with a computer and internet connection. The team was able to develop an interface

with full search functionality and user account tools that made saving asteroids and

queries easier. While there can still be improvements made, the team was able to

secure all of the client requirements and leave them with a stylish fully functional

application.

2. Process Overview
This section of the report focuses on the overall development process that the team

utilized to create a successful capstone project. While the whole capstone class

followed a development process most similar to the waterfall approach, our team within

that overhanging waterfall approach followed the agile methodology.

Our development process most resembled the agile methodology because each

meeting the team would have (team, mentor, and client) represented a different major

component of the agile process. Our team meetings were the equivalent of

standups/sprint planning because it would allow for members to voice their current

objectives as well as retrospectives because at the beginning of each of our meetings,

members would have the opportunity to voice concerns and good things that occurred

over the previous week.

The mentor and client meetings were our showcases as we were constantly updating

both mentor and client on the progress made on the web application. These meetings

involved various activities such as live demos, discussion to further understand

requirements, and time to resolve issues with the web application.

The team utilized a few pieces of software that allowed for the successful completion of

this project. For version control, our team used git/github to manage the project and

ensure that all members of the team were working on the version of the codebase.

In order to keep track of what objectives needed to be completed, the team used

discord to keep track of what features were in progress and what still needed to be

completed. Discord was also the main channel of communication for the team as it

made both chatting and recording design reviews extremely easy.

The roles that the team divided remained the same throughout the lifespan of the

project. Javier Quintana was the team lead, Zachary Messenger was the recorder,

Joseph Sirna was the release manager, and Miles Barrios was the architect. These

roles worked well and played a role in the reason for the team being successful.

3. Requirements
This section of the report details all of the specific technological requirements our

software must include. These requirements have been gathered through a series of

ongoing meetings with our clients and analyzing the project description provided to us at

the start of the semester. This section of the report will detail the key components of the

software we are planning to develop. Once all of these requirements have been met, we

should have a working web application that satisfies all of the needs of our clients in

order for them to further their research. Requirements fall into one of three categories:

● Functional Requirements

● Performance Requirements

● Environmental Requirements

3.1 Functional Requirements
Functional requirements represent the bulk of what our product needs to be able to do.

These requirements listed will be included in the final product as the base functionalities

for our web application. This section represents the core components we have agreed

upon implementing throughout our meetings with our clients this first semester.

3.1.1 Filter/Display Data
Our clients emphasized the importance of not putting off anyone not well-versed in the

field of astronomy when seeing the landing page. Other similar analysis visualization

tools suffer from “information overload” when someone arrives at their front pages. Our

solution aims to minimize this effect by concisely displaying interesting information in an

easy to understand format. This feature can be broken down into smaller components

that represent this functional requirement when used together, these smaller

components include filtering, selecting filtered datasets to be displayed, rendering

graphs that represent the filtered and selected data

Selecting filtered datasets to be displayed
After the user is returned the filtered data that they requested, the user should be able

to choose specific sets of data or ranges that are going to be displayed in various

formats (table, graph, etc). This select feature needs to be user friendly and allow for all

types of data points. This feature will be a big help to various researchers and users that

are creating a variety of displays.

Rendering graphs that represent the filtered and selected data
After filtering and selecting data, the user will need to be able to render graphs based

on the data provided. This will be done by providing Google Charts with the selected

data and providing instructions on what type of graph and how it should display the

data. One way to suggest a large amount of data exists without displaying it all in an

overwhelming way is to rank interesting and/or well-observed asteroids in a small table,

while large visualizations about interesting characteristics expressed in layman's terms

take center-stage on the front page. Clicking one of these asteroids on a graph will take

the user to a similar detail page. This should create an interesting and interactive

experience for the average user.

Example: a small table, sorted by observation count.

Example: clicking an asteroid Id will take the user to a page with more details.

Filtering
The ability to filter and search through large amounts of data is crucial to the core

functionality of this solution. This filtering section will allow for the user to choose

desired characteristics and properties of an asteroid that they require. The interactions

between the web interface and the REST API must keep latency to a minimum. In

addition, the REST API must be able to quickly and efficiently evaluate what data points

match the constraints provided via the filtering component.

3.1.2 Export Data and Graphs
In meeting with our clients, it has been deemed necessary that users are able to easily

save data and graphs to their own machines. This feature allows users to come back to

data they have been analyzing previously, load datasets and figures into other

softwares, or present their analysis alongside their research. On top of this, if an

interesting phenomenon is observed, the astronomer/researcher will likely want to save

the data/figures they found. Having the ability to download data and figures means the

user does not need to recreate either the queries or figures previously generated.

Exporting
Users will have the ability to export/download files to their machines in the following

formats:

● CSV

● PNG

● PDF

Data
In our web application, the user will be able to search for asteroids using filters to view

specific characteristics as described in the above requirement. This will present the user

with a subset of the larger database, and the user will have the ability to download this

data as described by the above requirement. The user should be able to download it in

the above formats.

Graphs

Similar to data, users will have the ability to download figures such as graphs created

before and after applying specific analysis tools. Any of the graphs that are able to be

created as described in the previous section will be able to be downloaded to the users

local machine in the above mentioned formats.

3.1.3 Create User Account
Our client has shared, both verbally and written that the ability to create user accounts

and set preferences is a key requirement for the web application.In addition, this would

allow for any researchers using this software to modify their preferences which might

relate to specific filtering or custom queries on the asteroid database. This functional

requirement can be broken down into the following smaller requirements:

Account Creation/Login
The implementation of user roles and preferences relies on the creation of a create

account/log in feature in the application. This login feature would be similar to that of

any other web page where anyone could create an account. However, roles would be

assigned by someone with the status of admin. These accounts that have roles lesser

than admin would have the ability to perform certain tasks such as viewing/exporting

graphs, data, and other visualizations.

User Settings/Preferences
Having a user settings feature will be essential to how users are able to interact with the

web application. The people using our application are researchers attempting to pull

different types of information regarding the asteroids, thus having a way for them to

adjust their experience using the web application should be crucial. These settings

could include preferences such as the maximum data points per graph, default export

format (CSV, PNG, xslx), bookmarked asteroids/observations, and the ability to limit the

number of datapoints returned from a query to name a few.

Saved Work Section

As research can take longer than a single sitting to complete, the ability for a user to

save their work becomes crucial to creating an application that meets the needs of the

client. This saved work section could include various types of visualizations, data tables,

and common queries. This section would use the share data analytics feature

mentioned below because allowing users to save their work would make sharing results

easier and faster.

3.1.4 Share Data Analytics with Other Users
Another valuable feature that was requested from our clients was the ability to share

data analytics with other users. The reason this is a functional requirement is because

the intention our clients have is to share this data with other users across the country.

Accompanied with sharing, we want to also provide links to other existing databases for

asteroids in order to provide more resources readily available.

Sharing
The graphical user interface we are creating will have the option to share each

asteroid’s metrics with other users via email or web URL in order to ensure that the end

user has access to the live data in case of any changes or developments. This will allow

easy collaboration amongst peers and researchers.

The implementation of making these resources available in our application will be done

by using simple linking to the same asteroid in the other database. We were able to

study the other databases to create a hyperlink that directly queries the needed

asteroid.

3.1.5 Database Import Job
Another functional requirement that the team found as a major one was the database

import job. In order to ensure that the application is using up to date data, the team will

run database import jobs to bring in any new information introduced to the database.

These import jobs need to be performed at ideal times when web application use is little

to none. This will ensure that no users are interrupted in the middle of work. It is

important that our application is able to receive import jobs for new data, or else the web

application would require manual updates which would defeat the purpose of our

application.

4. Architecture and Implementation

Architecture

As seen in the diagram below, our app consists of two main components. These being

the frontend user interface and the backend database. Our user interface is able to

interact with the database through a rest api. The rest api will send data requests from

the frontend to the database, and provide the data back to the frontend. This rest api

basically acts as a middleman between the database and our web application.

When viewed in this aspect, the role of each component can very clearly be seen. The

database is in charge of keeping our data accurate and consistent. This will be done

through regularly scheduled batch jobs that are to import new datasets without

disrupting the user’s experience. The database will also be answering requests from the

rest api in order to present data to our web application.

The rest api is very simply put, a middle man for our product. The rest api will receive

requests from the frontend/user and then send these requests to the database or

answer from cached queries.

The frontend application will be the user’s main interaction with our product. This

component will be visually appealing to the users and responsive with all the actions

users might perform. The frontend will display data to the user, manage the user’s

authentication status to save personalized bookmarks and preferences, and allow for

searching/querying of the database.

Overall, the data flow pattern of our application can best be seen through describing a

use case of our application. Suppose a user is viewing asteroid data and wants to

search for asteroids with a certain trait, let’s say asteroids that have above 20

observations in our database. This would mean that we have observed this asteroid

enough for the user to want to see the different metrics collected over a series of

observations in order to perform some form of analysis. Our user would start by going to

the search page in our application, applying the appropriate filters, and sending out the

request. This is where the data flow pattern of our application comes into play.

Our application starts by calling a frontend function to handle gathering the various

search parameters the user provided. These parameters are then used to create a

get/post request that will get the desired asteroids from our database. The frontend

function passes the request to our API, which in turn is able to execute the actual query

upon the database. From here, the database returns the results from the query: either a

list of asteroids with the desired traits or an empty list. These results are passed to the

API, which in turn sends data back to the frontend of the application. The frontend is

able to parse the data received into an easily readable form for the user, and then

displays these results.

Figure 1: Architectural Layout of the Interface

Implementation
In order to implement the ZTF Asteroid Analysis Tool (ZAAT), there are two main

components. We want to start by creating an interactive web application that allows for

users to easily view, search, and analyze asteroid data. The second component we

want is a back-end database and api to serve data from our database to the front-end

interface. These two components will give the user all the functionality required for our

product, and allow for easy upgrades and improvements to the interface without

affecting the ability of the application to run. Although these are the two main

components of our application, there was some breakdown of these technologies in

order to allow for them to operate as optimally as possible.

The chosen technologies for this project are broken down below:

1. ZTF Asteroid Analysis Tool (ZAAT)

a. Front-End React Application

i. Various styling frameworks to allow for an excellent user experience

ii. FirebaseJS to allow for user authentication, roles, and personalized

preferences and bookmarks

b. Back-End Database

i. A live hosted database that is updated regularly to keep data

accurate and consistent

ii. An api to service requests to the database and send them back out

to the front-end interface

This is a very general overview of the implementation of our product, and throughout

this document we will further develop the concepts of our designs to formulate a

blueprint for ZAAT. This should allow for incoming developers to understand our thought

process with our designs and understand how the tool was built.

5. Testing

Unit Testing

The purpose for unit testing the ZAAT interface is to ensure that various specifications

of the final product are functioning as intended and not performing any more or any

fewer tasks than they should be. It is important to ensure that each component of the

frontend and backend of this application is doing just what it is expected to do.

Especially because it is anticipated that multiple users will be potentially using the ZAAT

interface at once so optimal performance is key to ensure functionality.

As mentioned previously, the unit testing of our application will be broken down into two

main components of testing. The first component is the frontend of the application,

which handles the user interactions and views. The second component is the backend

of the application, which is responsible for managing the data being delivered to the

frontend and holding user information privately.

Frontend Unit Testing
Our main user interface is built completely in React, which is a JS framework that uses

node.js to run applications. Although we have been testing the functionalities of our

application as we have been building it and making sure everything operates as we

want it to, we’re going to build more structured tests that we will be able to use for

testing a larger chunk of our javascript code much more efficiently. Going along with

this, we have laid out several test cases that will comprise our unit testing of the

frontend.
Note: For each of our cases we will be using Mocha.js or Jest.js as they interface with React and

Node.js well for testing purposes.

Test Case 1: Performing a Query

One key requirement of our application is being able to perform queries on a database

of asteroids based on the desired characteristics provided from our users. Without this

key feature, our application would virtually not be doing anything. This is why it is

important to test this functionality to ensure it works to the best of our ability.

Overall, this test should be pretty straightforward. What we need to ensure here is that

our frontend can validate user provided search parameters, then using these

parameters construct our query into the proper format. Once the user enters the desired

search criteria, the application will validate the data entered, construct a query, and

connect with the rest api. Depending on the type of query (i.e., insert vs select), we will

also want to handle awaiting a response vs not receiving one.

One key problem to watch out for here improperly formatted queries and not being able

to connect with the database. If either of these problems were to occur, it would block

the entire application from running since we really rely on this asteroid data.

Test Case 2: Viewing Specific Data Relating to an Asteroid

Another key requirement is that we want our application to be able to access the data

for individual asteroid pages. This is the bread and butter of our software, because once

users have been able to query the database and get back the results they desire, it is all

for naught unless they are able to view this interesting data that drew them to said

asteroids.

The first component of this test would be covered by Test 1, and that is being able to

query the database. From here, we can find an interesting asteroid and access its page,

which pulls the data about the asteroid from the database once again. This test case

should be pretty straightforward and once we validate the first test case, this one will be

a piece of cake.

Test Case 3: Accessing and Saving Data to User Profiles

This case follows very similarly from the previous two cases, but will interact with new

tables in our database that host information relating to the user. The first step of this test

will be determining if our frontend is able to interact with our backend. Once this is

verified, we’ll have to test insert and select statements on this new table with user

information.

This data will be relating to user bookmarks, display name, and search result

preferences. All of this information will be secure and only accessible if the

authentication service, Firebase, detects that a current user is signed in. One key

problem to watch out for here is making sure that our queries cannot be

broken/tampered with in any way that would allow unauthorized users to obtain data not

relating to their user profile.

Backend Unit Testing
On the backend of our application, we have our database and REST API which are

doing the heavy lifting when it comes to data storage and retrieval for our application.

Again, we have spent a lot of time working with our application functioning as a whole in

order to test how the backend is able to handle edge cases. We have still come up with

a number of test cases to construct and work through to ensure that our application is

avoiding all critical problems.

Since the REST API is written in C# .NET, the logical choice of unit test library is

MSTest. We will write several unit tests using MSTest for each core functionality of the

backend. These unit tests will be focused solely on internal consistency of method

returns from a backend-only perspective; ensuring that non-nullable fields are, in fact,

not null, for example.

Test Case 1: Retrieval of a Large Number of Asteroids from MySQL

One of the main focuses of the backend of the application is the ability to serve large

amounts of data to the frontend. As a prerequisite, however, it must first be able to

query large amounts of data from the database, which it then serializes. This unit tests

involves querying every asteroid in the `asteroid` table from MySQL, as well as

populating associated observations, and checking the results for anything that failed to

populate.

Test Case 2: Updating User Preferences

The API is also responsible for being the intermediary between the frontend and the

database in the context of update queries, not just data retrieval. A good example of this

communication occurring in the opposite direction is the ability for a user to update their

preferences (stored in SQL). In order to emulate this functionality, this unit test will call

the method to update user preferences, not in the form of a post request, but a local call

in C#. The result will then be checked before and after the update to ensure that all user

preferences (results per page, etc) are able to be updated individually.

Test Case 3: Registering / Deleting a User

This unit test will ensure that the functionality to register a user / delete a user works as

intended. This will be accomplished as above, by calling the public-facing API method

with C# and checking the results in the database before and after each creation/deletion

operation on an auto generated test user.

Integration Testing
The purpose of integration testing is to take the tests done in unit testing and stack

these various pieces on top of each other to make sure that everything still works as

expected. When performing integration testing on a component-based front-end such as

this project, the testing can be a bit tricky. The approach that Team Ceres has decided

to take with integration testing is to test the smaller components individually first and

begin to stack these components on top of each other to generate the overall larger

components that make up the web application.

The major modules to be tested in the code include the overall app component which

embodies the web application as a whole as well as the following pages (components):

Home, Search, Bookmarks, and Account. These four major pages represent a

high-level overview of the components that make up our front-end. Each of these pages

is made up of multiple smaller components and/or components that lead to a smaller

page. The plan to perform integration testing on a single-page application is to use the

popular testing library for React applications known as Jest. Since React uses the state

to handle variables and data, we will be able to perform integration testing on

components by having components make the various state changes and API calls

needed. We will figure out what data should be expected to be in that state and test to

see if that data matches when the component is loaded.

The app component (overall web application) gets broken down into the 4 components

mentioned above. The app component will be the final piece of the integration testing

that gets tested as it is made up of a large amount of smaller components. While the

app component will be a little harder to test since there is a lack of state, the current

plan is to assume that by testing smaller components, we can assume that the app

component works if it is built off of other tested components. In addition, the team can

visually confirm if the component is rendered and acts correctly.

The Home component contains multiple histogram components that are generated

using data retrieved from the database via an API call. These histogram components

utilize a node package called Google Charts. This library allows for data to be sent to a

component and then the corresponding component is generated and returned. In order

to test our histogram component, we will make a call to the API to know what data

should be returned, we will then use JEST to ensure that the data returned matches

what we expected. This can be repeated for all the histogram components generated on

the home page. By verifying these smaller components, we are able to verify that the

home page is correctly generated.

The Search component contains a search filter column that is responsible for providing

data to the frontend via a similar API call to the one used in the Home component. Once

a call has been made retrieving the current stored asteroid data, it will be displayed in a

sorted order (either ascending or descending based on the filter choice) based on the

value. Since data is being transferred we can test this component like we do the Home

component and use JEST to verify that the data we are querying is what we should be

expecting. To be even more thorough, we can test each property filter in the search

criteria. This will allow us to also verify that each and every value present in the query is

accurate.

The Bookmark component is currently responsible for maintaining the list of favored

user asteroids and has the very simple functionality of displaying a link to an asteroid

data graph. While this could be tested with an automatic library, the team decided it may

be best to manually test this component as it will be obvious which data needs to be

delivered. Testing this component will be as simple as adding specific asteroids to our

list of bookmarks, and then verifying that you can access that asteroid. The main reason

being that this component does not require much digging to determine if it works.

The Account component works the most with Firebase, as Firebase is responsible for

maintaining the user data and preferences. Since Firebase is responsible for the data

we are using, we can test the user data storage similar to how we are able to test data

provided to us from the home page using Jest. The team is already able to see who has

created an account in the interface so the testing would not be as long due to the limited

amount of accounts we have already. Testing would simply consist of verifying that a

freshly created account matches the expected data we put in.

Usability Testing
The purpose of usability testing our interface is to ensure that the tools we have created

are easily understandable and can be used by people with various degrees of

technological knowledge. Testing with outside users who are not familiar with our

program and have not been following along with its development makes them the

perfect demographic for ensuring the usability of our program. While the users of our

application will only be using the frontend to evaluate asteroid data, there are still plenty

of tools on the frontend that we have created and want tested by users.

Below we have created a list of the actions and tools we want users to test during the

usability trials:

User Actions
1. Navigate to the ZAAT Interface - Dependent on where the interface is hosted.

2. Navigate to the Search page, Bookmarks page, an individual Asteroid’s page,

and the Account page.

3. Create an account on the interface and log in.

4. Search for an asteroid by any property, then search for an asteroid by name.

5. Bookmark any asteroids then navigate to where that bookmark is located.

6. Go to an asteroid’s page from the Bookmarks page.

7. Change the X and Y axes on the asteroid graph.

8. Download the asteroid graph and then view it on either the Antares or MARS

interface web page.

9. Go back to any saved bookmarks and remove them.

10.Delete the user account being used.

The list we have created for testing has been written as such because it will ensure a

number of things as the user processes the instructions. The instructions will first take

the user through every single page our interface currently has to offer so they can be

aware of what these pages look like for the following steps. After the user has become

familiar with the location of these various pages, they will create an account so they can

test the functionalities we have implemented that require a user to have an account. As

such, they will continue by running queries on the interface and save bookmarks for

later testing. After searching and navigating through individual pages of asteroids, the

user will test undoing the bookmarks they just created and will finish off by deleting the

account they have just created.

All of these instructions will expose the user to all of the functionality currently installed

on the interface and have been designated as our baseline instructions to know that a

user understands how to properly use our interface. And while we acknowledge that

everything the user does is not the entirety of the functionality we have built-in, the

important thing that the team is mainly concerned with is a user’s ability to find these

tools on their own. Once we have had users test these components, we can look for

tester feedback to improve the interface.

6. Project Timeline

6.1. Semester 1 Timeline
During our first semester, we spent a lot of time gathering requirements and making

sure that we had a good understanding of the vision that our clients had in mind when

proposing the project. From here, we began production on our documentation and

application in early October with our first due date being in mid November.

To start off with our project, we created a design review presentation that showed we

efficiently and effectively communicated with our clients to understand their

requirements for the project. From here, we then turned around and put these

requirements into a more official document that related the required features of our

application to the technologies we chose to use for our building the application for our

clients.

Once all of these requirements were gathered and set into stone, we began to produce

a technical demonstration to show that our application would be able to get the job done

with the technologies we had chosen. This was the most fun we had as a team during

the first semester. It was an amazing experience to actually get to build out the

application as a team and put code together that worked for the exact purposes our

clients had in mind.

From here, we moved into the second semester where we focussed very much on

finalizing the application, working out any weird kinks, and making sure that all features

were working as desired.

A detailed rundown of the key tasks we accomplished can be found in the chart below.

6.2. Semester 2 Timeline
In our second semester, we had a lot more focus on developing our application and

documenting how exactly we were developing it so that it would continue to be usable

and scalable long after we leave and hand off the project.

To start the semester, we reviewed the MVP that we were planning to build for the client

and the features on top of this MVP that would make our project stand out from the rest

of the capstone projects this year. Initially, we had a very great foundation for our

application from last semester’s technological demonstration. All of the key components

of our application were already integrated within one another, and from here we just had

to build out more features. This included making desired aesthetic changes to the

application, adding more graphing features, personalization updates, etc…

On top of this, we had to prepare a couple of documents to record our design process

with our application and create presentations to commemorate our great work.

A detailed rundown of the tasks we accomplished can be found in the chart below.

7. Future Work
As far as future work goes, the application is still something that can be improved over

time. To start the querying of asteroid data could also incorporate the use of

mathematics or multiple metrics and features. There is the potential for users who are

not signed in or using an account to have bookmarks saved using cookies or browser

settings. Additionally the database could be expanded to include data about other extra

terrestrial bodies besides just asteroids, such as stars or planets. A final key example

would be to make modifications to some of the google charts sylings or override these

stylings to improve readability and scalability of the charts within the application.

These are just a few small ideas that we came up with our clients in some of our final

meetings and some ideas that we heard would be nice throughout the semester. We

believe that we have provided ample documentation and insight into our design process

so that future developers on this project will be able to easily understand our ideas and

implementation process in order to continue developing this application into something

that can help astronomers all around the world.

8. Conclusion
The big data revolution is coming to astronomy, and there are very few computational

methods for analyzing this data as it currently stands. The knowledge to be gained from

this data could lead to many powerful discoveries, but most importantly it could help us

to prepare for the inevitability of an asteroid impacting Earth. So Team Ceres plans to

address this problem. We want to build a scalable, responsive web application in order

to aid in this revolution. We plan to use a comprehensive data visualization framework,

user authentication, and importing data to a web-accessible database system in order to

reach our goals.

We spent a good deal of time researching and testing the feasibility of the various

technologies that we used for this project, and we feel confident in the decisions that

were made along the way. The finished application that team Ceres delivered to the

client met all of the requirements specified back in the fall semester. Some of the major

features that should be noted include:

● Fully functional search page

● Bookmarks page that is linked to user accounts

● User Settings page

● Efficient Rest API to deliver data from database to front-end

As discussed above, this project was created to allow for Professor Trilling and

Professor Gowanlock to be able to quickly and effectively gather information on the

asteroid data being transferred from the ZTF. Our team achieved just that by creating a

responsive and reliable front-end which was connected to the database using a REST

API which allowed for fast transfer of data. Due to the application, our client will no

longer have a need to go to their database guy as they can now easily perform

database queries on their own and receive the data and graphs they want quickly.

During the semester, our client discussed that this application was not just for them as

they work with a number of other researchers who would benefit from this application as

well. The web application is hosted on AWS which makes for universal access for all.

Should another team pick up this application in the future, this GUI could be useful for a

very large audience.

Overall, the team performed extremely well and was able to provide a complete web

application to our client. The trick to this was communicating effectively and having trust

that each other would complete the assigned task on time. The utilization of the agile

methodology proved to be a key part to the success as requirements are constantly

changing. This whole year of capstone provided the team with an opportunity to grow

significantly as developers as we look to enter the professional world of software

development.

Glossary

All Sky Survey. A general map or image of a region of the sky that lacks a specific

observational target.

Asteroid. a small rocky body orbiting the sun. Large numbers of these, ranging in size

from nearly 600 miles (1,000 km) across (Ceres) to dust particles, are found (as the

asteroid belt) especially between the orbits of Mars and Jupiter, though some have

more eccentric orbits, and a few pass close to the earth or enter the atmosphere as

meteors.

Google Charts. A graphing library developed by Google to help visualize data with

various graph types and interactions.

Query. To search or browse through data, in this instance, asteroid data.

REST API. An application programming interface (API or web API) that conforms to the

constraints of REST architectural style and allows for interaction with RESTful web

services. If you want to interact with a computer or system to retrieve information or

perform a function, an API helps you communicate what you want to that system so it

can understand and fulfill the request.

ZAAT. ZTF Asteroid Analysis Tool, the name of the interface Team Ceres has created

that helps visualize data from the Zwicky Transient Facility.

ZTF. Zwicky Transient Facility, the origin of the database where the ZAAT pulls asteroid

data from.

Appendix A
Hardware
The ZAAT Interface is a web application that is currently being hosted on an instance of

an Amazon Web Services server, currently being paid for by our clients. The server has

a total of 4 gigabytes of memory, 80 gigabytes of storage, an Intel Xeon E5-2686 CPU

and uses AMD64 architecture. More specifically, the server is Amazon’s t2.medium plan

and uses Windows 2019 Server to host all of the information for our web application.

Hardware Requirements
After an excessive amount of testing and research, the team has determined that there

are minimum server requirements to have this web application properly hosted. In order

to complete processes and data transfer, the team has found a requirement of 4 GB of

memory on the server as it has to deal with the bloatware on Windows and handle live

web operations. Along with this, the team also suggests at least 2 CPU cores on the

server to get the tasks completed in a fair amount of time. Any less presented more

issues with functionality and made the application very difficult to use. Finally, the web

application needs at least 60 GB of storage space to hold the data from the ZTF that is

being sent to the web application. This ensures that there is enough space for the data

on there and will allow some room for new data to be held while old information is

cycled out.

Toolchain
In this section of the appendix, we will outline all of the actual software tools we used in

developing this application. As far as environments go, we did not use any specific

development IDE other than each person's preferred text editor. There was no real need

for everyone to jump on board with a single IDE for this application because we

established some good and practical coding practices to keep our codebase clean.

On top of this though, we did have several useful tools to the development cycle we

believe are notable. Starting with the frontend component of our application, we built our

web interface using React JS and Node.js. These components were very nice when

sharing code around our team because Node.js has a built in Node Package Manager

(NPM) which was able to track and install new packages each person added to our JS

libraries. With the combination of these two technologies, package management and

installation was basically taken care of.

Moving onto the backend of our application, we used two key components for our

application. A Rest API and a MySQL database instance. The Rest API was the

middleman for our application that would receive data requests from the frontend of the

application, perform queries on the database, and then return the results formatted

using JSON to the frontend of our application. The MySQL database instance was used

simply to host our data, support constant updates, and hold some notable user keys

and information.

With all of the noted technologies above, we believe that our application should be able

to run on any machine with the appropriate hardware specifications.

Setup
Required on windows server:

- .NET Core 3.1 Hosting Bundle

- Node.js

- MySQL Server

- IIS 7 / 8

If compiling from source code, Visual Studio 2019 is also required.

Building From Source
Visual Studio 2019 is required to build all 3 parts of the source code (import, api, and

frontend). For all 3 projects, the initial build configuration is very similar.

Opening the Build menu from Visual Studio, click “Publish [project name]”

For the frontend, the build is configured as follows:

For the database import tool, the build configuration is set up in the .sln file by default

and should publish the .exe and any required Dlls to

“<project location on disk>\bin\Release\netcoreapp3.1\publish\”

For the API, the build configuration looks as follows:

Setting up the Database
Once MySQL has been installed and an administrative user configured, the following

tables must be created manually: `users` and `bookmarks`. The .sql file to create these

tables is located on the Desktop on the hosted server instance provided, but also along

with the database import job repository just in case.

Running the Import Tool
Once the MySQL database has been created and configured according to the above

step, the 3 main tables can be imported: `ztf`, `timeseries`, and `asteroids`. These

tables can be selectively imported by way of command line arguments supplied to the

import utility executable, which are “-ztf”, “-timeseries”, and “-ast”, respectively.

Note that the import tool’s schema configuration file must be changed if the schema of

any of the corresponding .db or .csv files change. This file should be located in the

specified directory within DBImport.dll.config (screenshot below).

In addition, the URLs for each of the source .db and .csv files needs to be specified, as

well as the MySQL username and password.

Hosting the API / Frontend
Once the API and/or Frontend project(s) have been built from source according to the

instructions above, the process for hosting them is identical. First, create a directory

somewhere accessible by the IIS worker process for each of the websites.

In this example, C:\websites\api and C:\websites\frontend were chosen (see below).

Next, copy the respective binaries that were compiled by Visual Studio to these

directories.

Make sure to configure the Web.config file for the API to use the appropriate MySQL

username/password.

The next step is creating two website instances in IIS.

Right click the “Sites” folder, then “Add website”.

Specifying a user account to connect as is critical for the website to function properly.

Issuing an SSL Certificate
For this project, we used the CA at letsencrypt.org

For this (optional) step, the following are required:

- openssl binaries (https://www.openssl.org/)

- certbot binaries (https://certbot.eff.org/)

First, stop the two websites set up in the previous step.

Run certbot from the command line, “certbot certonly”.

Follow the instructions prompted, entering the name of the domain(s) you want an SSL

certificate for.

Then, run openssl and convert the certr1.pem and privkey1.pem into a .pfx file to be

imported into IIS.

Once the .pfx file has been created, open IIS and click the machine name, then “Server

Certificates”.

Next, “Import...”

Specify the .pfx and password used in the command line for openssl, then click “ok”.

Once imported, click each website and then “Edit Bindings...”

Then select “https”, enter the hostname, and select the imported certificate.

Repeat for each website you wish to issue an SSL certificate for.

Production Cycle
Once all of the above steps have been completed, any new developer should be able to

actively contribute to the application. Now let’s get into the details of how one might get

started with this. We created our codebase to live inside of a git repository, so it is very

easy and intuitive to navigate the directories and see the file structure that we

implemented. Something that might be beneficial would be to review how React JS

applications are structured with components.

From here, the code base can be opened in any text editor of choice. Our team decided

to use free to use versions of Visual Studio and Visual Studio Community for simplicity

of showing code to each other and maintaining formatting. But again, any text editor will

work. In order to make changes to the application, changes can be made directly to the

JS files contained in the code base, and since the application is run using node.js, once

any changes are made and saved, the changes will be reflected in the locally running

version of the application.

In order to publish changes to the server (AWS), we decided to use the Build and

Publish features of Visual Studio to make a more compiled runtime version of the

application. Simply use these commands, save the compiled files to a local directory,

and upload them to the AWS server in order to have changes be made to the live

running application.

