

Table of Contents

Section 1: Introduction 3

Section 2: Implementation Overview 7

Section 3: Architectural Overview 8
3.1 Architecture Design 8
3.2 Architecture Information 8

Section 4: Module and Interface Descriptions 10
4.1 Translation Engine 10
4.3 Binary Parser 13
4.4 File Assembler 16

Section 5: Implementation Plan 18
Section 5.1 Integration Stage 1 18
Section 6: Conclusion 20

Appendix A 21

References 22

2

Section 1: Introduction

1.1 Project Description
It was August, 2009 when a car crash in southern California ended in disaster, resulting
in the loss of a family of four. The cause: uncontrollable acceleration. In the coming
months, investigators would find that negligent coding practices produced a defect in
the car’s electronic throttle system [8] which led to uncontrollable acceleration in
Toyota vehicles. After nine more reports of similar uncontrollable acceleration, Toyota
would be forced to recall over 8 million cars suspected of containing these software
defects. At its peak, the recalls cost the company $54 million a day in lost sales revenue
[8] and brough one of the world’s most prominent car companies to the brink of
financial collapse.

Instances like the one with Toyota demonstrate the enormous responsibility software
has in modern life. From cars to toaster ovens, it is hard to find devices and services
which do not rely on some form of internal software. As the role of software has
increased in the products and services that are used, so too has the dangers of software
bugs. While many of the bugs found in software have enormous consequences for
companies and their revenue, more often than not their impact is not quantifiable. The
responsibility of companies creating software in the modern world has transcended
simply creating a usable product--it has become in many scenarios a matter of life or
death.

If the scope of software has evolved to such a major extent, how do software companies
create products efficiently, while still meeting the often intense and rigorous safety
requirements for products? Even when safety requirements are not as strict, creating a
bugless, well-rounded software product is an enormous issue for companies. Indeed,
software success rates for companies have traditionally been low. In 2014, the Standish
Chaos Report [1] measured the statistical success of software projects and found that
only a mere 16.2% of all software was completed on-time and on-budget. Similarly,
delayed and canceled software cost companies and the government a combined total of
$150 billion dollars [1] in 1995. While development strategies have evolved since [4] ,
X [5] , software success rates remain a great challenge for the software industry that loses
billions. To increase project success, companies need more effective strategies for
quality control and project development [3] , [4] , [5] .

3

https://www.motortrend.com/news/toyota-recall-crisis/
https://www.motortrend.com/news/toyota-recall-crisis/
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
http://fs2.american.edu/alberto/www/papers/CACM_2006_LeeDeLone&Espinosa_Ambidexterity.pdf
https://www.sciencedirect.com/science/article/pii/S0164121206001713
https://s3.amazonaws.com/academia.edu.documents/35530814/200410-jones.pdf?response-content-disposition=inline%3B%20filename%3DProject_Management_Software_Project_Mana.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20191105%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20191105T041020Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=4e7fe5df3f3bee98a2668609f70b16a17dfd64393d4cd0131cb3cbdf44521d2e
http://fs2.american.edu/alberto/www/papers/CACM_2006_LeeDeLone&Espinosa_Ambidexterity.pdf
https://www.sciencedirect.com/science/article/pii/S0164121206001713

TDD (Test-Driven Development) is one such method which has seen success since 2009
[2] and has led to an increased adoption of unit testing by major software companies
[2] . The impact of unit testing on project performance is related to code defects.
According to research by Software Productivity LLC, most successful projects have
around 4 defects per function [3] , while unsuccessful projects typically have 7 or more
defects [3] . From this research, it follows that the reduction of defects in a system
directly correlates to an increase in project success. Studies conducted at Microsoft
found that unit testing reduces defects in a system from 62% to 91% using automatic
techniques and 20.9% using normal [2] . Thus, unit testing can be connected with an
increase in the probability of project success.

Despite the increased performance automatic unit testing can provide over its normal
counterpart, developers typically do not understand how to use automatic testing
techniques such as fuzzing and symbolic execution [6] . Associate Professor Alex Groce
at Northern Arizona University and cybersecurity company Trail of Bits have created
DeepState to fix this problem. DeepState is a unit testing framework which acts as an
easy-to-use interface providing access to automatic unit testing techniques [7] .

1.2 Problem Statement
Understanding the problems DeepState currently has requires an understanding of the
DeepState workflow. Take for example the process modeled in Figure 0 . To use the
DeepState framework, the developer must first link the DeepState.hpp file to the test
harness. At compile time, the harness file is
linked with the DeepState library, which
references the executable Test.o file in the
figure to output binary test cases in thousands of binary files with pass/fail conditions
using fuzzing engines.

Given the above process, most developers
have difficulty transitioning from their
current framework to the DeepState tool.
Due to the need for testing harnesses
native to the DeepState framework, the
integration of DeepState into large-scale
projects is limiting for existing
technologies because:

4

https://collaboration.csc.ncsu.edu/laurie/Papers/Unit_testing_cameraReady.pdf
https://collaboration.csc.ncsu.edu/laurie/Papers/Unit_testing_cameraReady.pdf
https://s3.amazonaws.com/academia.edu.documents/35530814/200410-jones.pdf?response-content-disposition=inline%3B%20filename%3DProject_Management_Software_Project_Mana.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20191105%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20191105T041020Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=4e7fe5df3f3bee98a2668609f70b16a17dfd64393d4cd0131cb3cbdf44521d2e
https://s3.amazonaws.com/academia.edu.documents/35530814/200410-jones.pdf?response-content-disposition=inline%3B%20filename%3DProject_Management_Software_Project_Mana.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20191105%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20191105T041020Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=4e7fe5df3f3bee98a2668609f70b16a17dfd64393d4cd0131cb3cbdf44521d2e
https://collaboration.csc.ncsu.edu/laurie/Papers/Unit_testing_cameraReady.pdf
http://lcamtuf.coredump.cx/afl/
https://agroce.github.io/bar18.pdf

● Projects may already have previously unit testing frameworks (such as
GoogleTest) which contain unit tests that would need to be rewritten.

● The cost of installing the DeepState framework across a company’s systems may
be inhibiting.

● Maintaining two testing frameworks is painful and takes more resources.

1.3 Solution and Requirements

To solve these problems, GenTest has been contracted to create a system that can
provide developers access to the DeepState framework without incorporating DeepState
itself into the project. Our solution is a pseudo-compiler which will read unit tests
defined in the DeepState framework and translate them to a standalone unit test in an
external framework of the developer’s choice. For example, if a developer wrote a unit
test in DeepState, they could use the GenTest software to translate it into the syntax of a
widely used C++ testing framework, Google Test. To better understand the jargon of the
project, please see Appendix A.

The solution implemented by GenTest must meet the following Domain-Level
Functional Requirements:

1. The GenTest solution shall translate DeepState unit tests into standalone unit
tests in an external framework.

2. The GenTest solution shall replay the DeepState-generated test data produced
by fuzzing and symbolic execution.

3. The GenTest solution shall be able to translate nested and non-nested structures
in the standalone output file.

In addition to these Domain-Level Functional Requirements, the solution must provide
functional correctness and usability. Functional correctness refers to the ability of
the GenTest solution to provide output unit tests which are functionally equivalent to its
DeepState unit test representation. This means that if a developer writes a unit test in
DeepState and translates it into, say, Google Test, they should reasonably expect the
unit test to behave in a functionally equivalent way. Usability in this instance means
that the provided solution is easy for DeepState users to adapt as defined by specific
metrics. More on these metrics can be found in the Requirements Specification
Document .

5

Guided by the above functional and performance requirements, the GenTest solution
has some basic restrictions on what it can support. First, the GenTest software can only
provide support for the MacOS and Linux operating systems. Second, it can only take C
and C++ code for translation. Finally, the GenTest solution must take the form of a
command-line interface. Incorporating these restrictions, GenTest is optimistic that its
software product can provide a well-rounded solution for the client’s problem.

6

Section 2: Implementation Overview

As previously mentioned, the GenTest product is a pseudo-compiler that is designed to
tackle the main domain-level functional requirement of producing a compilable and
executable external unit test from a DeepState specific test. In simpler terms, the
purpose of the GenTest solution is to take one unit test in DeepState (using its library
specific syntax) and translate it into a runnable unit test file in the language of another
unit test library. “Pseudo-compiler” is used as a rough term to indicate that the GenTest
software is not simply a compiler itself. As a whole, the GenTest solution provides the
mechanisms, tools, and interpretations necessary to translate DeepState functionality
into an external unit test. The ultimate end-goal of this translation is to provide a simple
and comprehensive method for a developer using DeepState to export its main
advantages into the external unit testing library of their choice, efficiently. To achieve
this goal, the software is divided into three concerns: interpretation, translation, and
assembly.

Maps are used to relate the interpreted unit tests into translated values. The GenTest
software uses the C++ Standard Library implementation of a map for these associations.
For correct reference, the version of C++ used is C++ 11 or higher. More on the map
data structure used by the interpretation approach can be found at:
http://www.cplusplus.com/reference/map/map/ . The map data structure provides the
GenTest solution with an easily configurable, efficient manner of associating translation
terms with translation literals. Similarly, the availability of maps means that the system
can incorporate multiple maps relating to different C and C++ unit testing frameworks.

All other components and algorithms used by the GenTest software do not involve
external libraries or will make use of DeepState functions. More on each of these
concern areas will be described in the Modules and Interface Descriptions section.

7

http://www.cplusplus.com/reference/map/map/

 Section 3: Architectural Overview

The Architectural Overview section is used to give detail on the overall system design.
This section will introduce the components and subcomponents for the GenTest system.
This section will contain two parts, The first giving a visual representation of the overall
architecture, and the second part giving commentary regarding the architecture.

3.1 Architecture Design
This part will contain an overview of the overall system output, including a diagram with
each individual part of GenTest, what it takes as inputs, and what it gives as outputs.
The general layout of the GenTest system is laid out in Figure 3.

GenTest System Overview

Figure 3 - GenTest System Architecture Overview.

3.2 Architecture Information
GenTest contains multiple components that come together to generate a standalone test
utilizing DeepState values. This part will contain information on each individual
GenTest system, laying out the key responsibilities and communication mechanisms for
each individual part. Besides the use of ANTLR for the Translation Engine, this project

8

is bare metal, using only default C++ standard template library for development. This
section will give a broad understanding of the GenTest system, before going into more
details in section 4.

 3.2.1 Translation Engine
The Translation Engine’s job is to deconstruct the DeepState test file. The Translation
Engine will take in the file to be translated, then break it down into a parse tree utilizing
ANTLR4. This parse tree will then be passed to the File Assembler for reassembly of the
standalone test file.

3.2.3 Binary Parser
The Binary Parser’s job is to make sense of the unstructured binary data generated by
DeepState. The Binary Parser will take in an unstructured binary data file generated by
DeepState and read the data contained in that file. The File Assembler will then utilize
the Binary Parser to “fill in the blanks” where symbolic values once were.

3.2.3 File Assembler
The File Assembler’s job is to reconstruct the file using the parse tree given by the
Translation Engine, while also inserting values from the Binary Parser. This
reconstructed file will then be outputted as a C++ file. The standalone file will be
compilable and contain the generated values from DeepState.

9

Section 4: Module and Interface Descriptions

The Module and Interface Descriptions section is designed to provide further detail on
each component listed in the software architecture. It provides additional information
on the responsibilities, sub-components, connections, and interfaces which comprise
each piece of the architecture. Additionally, the limitations of each will be explicitly
stated as to provide a comprehensive overview of the capabilities and expectations of the
components. As mentioned, there are three major concerns of the GenTest software:
interpretation, translation, and assembly. In the following discussion, these concerns
are related to the components of the system architecture in the following way:
interpretation is provided by the Translation Engine, and translation and assembly are
provided by the File Assembler and Binary Parser. While other components are
necessary for the system, these components provide the basis for most system
functionality.

4.1 Translation Engine
The responsibility of the Translation Engine is to provide interpretation for the GenTest
system. When the word interpretation is used, we are generally referring to the analysis

Translation Engine Class Diagram

Figure 4 - Classes of the Translation Engine Component

10

of C or C++ code files containing DeepState unit tests which utilize DeepState syntax.
Nominally, the Engine is expected to take as input a stream of characters and lines,
representing the file to translate, and perform analysis which will A) identify translation
terms and B) abstract these translation terms into a generalized representation. By
translation term , we refer to any combination of characters which represents a string
literal in DeepState syntax and which requires translation into another library. Further
generalized, the objective of the Translation Engine is to take a file to translate (i.e.
myUnitTest.cpp) and produce an abstract representation of its contents (i.e.
conditionals, functions, classes) in a data structure which identifies special DeepState
syntax, that the File Assembler can then use to deconstruct this syntax into its output
translations in external frameworks.

This responsibility requires several classes which work together to produce the
outputted data structure. As depicted in Figure 4, the Translation Engine uses the
ANother Tool for Language Recognition (ANTLR) library to implement this
component’s functionality. ANTLR is a library which provides a standard method for
producing parsers capable of recognizing constructs defined by a language grammar
(more on ANTLR can be found at https://www.antlr.org/). The parser generated by
ANTLR identifies DeepState syntax as defined by a custom-made language grammar.
What this provides is a comprehensive, fully-configurable parser capable of efficiently
understanding program structure while minimizing the overhead required to create a
custom-made parser capable of accepting a wide-range of programming syntax.

The first class to note in Figure 4 is the Translation Engine class. It acts as the external
interface for all other sub-components of the Engine and provides the utility functions
needed by other modules for code file interpretation. The class makes use of two other
major components of the Translation Engine, the GenTestParser class and
GenTestLexer class, to provide these services. Both of these sub-components are
auto-generated by the ANTLR4 library and make use of the ANTLR4 C++ run-time to
function. At the present, the ANTLR4 runtime library is comprised of header files
incorporated into the project.

The GenTestParser and GenTestLexer classes are the core of the Translation Engine
parser. These classes serve to A) interpret the file to translate based on a grammar
written by GenTest (GenTest.g4) and B) provide interpretations for the base string
tokens in the file to translate. Together, the parser and lexer work to create a
hierarchical structure of the file and to identify translation terms, as previously
discussed.

11

https://www.antlr.org/

However, the parser and lexer alone do not have the capability of creating the data
structures needed to convey the abstracted information they have identified to other
modules. ANTLR4 listeners are used to provide this capability. Listeners work by
watching the GenTest parser module and waiting for specific events. When one of these
events occur, the listener can use information provided by the parser at that time to
construct the necessary structures to provide for translation. In the class diagram, the
ASTListener and CrudeListener are two separate implementations of the common
interface for a GenTestListener based on the GenTest grammar. One is specifically
designed to create an AST from the information, while the other is meant to provide
only a list of translation terms and their relative positions in the file to translate.

As stated, the main interface for the Translation Engine component is its Translation
Engine class. A more detailed overview of this class is given below:

TranslationEngine Class

Field Parameters: N/A
Functions:

● getCrudeList(std::string filePath) : std::vector<node>
The getCrudeList function takes in a string filePath representing the
location of the file to translate and runs parsing operations on that file. For
every translation term in the file, a node is added to the return vector
containing the non-terminal representation of that translation term and its
relative position in the file. After parsing operations are completed, the
function returns a vector containing a set of nodes.

● getAST(std::string filePath) : AST
The getAST function takes in a string filePath representing the location of
the file to translate and runs parsing operations on that file. For every
construct found in the file, an abstract representation is added in a
hierarchical fashion to an Abstract Syntax Tree (AST). This AST is then
returned at the end of execution and contains all found constructs with
their relative positions in the file to translate.

The two methods described above provide the main services of the Translation Engine
to other components in the GenTest architecture.

12

4.3 Binary Parser

The binary parser will transform the unstructured binary data created by DeepState into
structured values that can be inserted into a test. This parser will provide support for
both reading the binary values from a foo.test file generated by DeepState, and for
extracting binary values from DeepState at runtime. At its core, DeepState supports the
fuzzing of several primitive data types. These fuzzed values are then used by DeepState
to run the tests in a harness.

DeepState supports fuzzer integration by exposing a public API that allows users to
declare abstract values in their tests that are later filled in by DeepState. Typically, this
API follows the “Deepstate_Type()” idiom, where “Type” is the type of the value to be
returned. For example, “Deepstate_Int()” returns an integer that was generated by a
fuzzer. Tables 1 and 2 detail the numeric and non-numeric types supported by
DeepState, respectively. For each type, the size in bytes is also shown. The binary parser
must provide support for the extraction of these values from unstructured binary data.
Because binary values may come from different types of input stream, the Binary
Parser’s interface must be decoupled from any one form of input.

As discussed with our client, the binary parser will need to translate unstructured binary
from multiple sources. Thus far, two main sources of unstructured binary data have
been identified: (i) Test files (foo.test) generated by DeepState, and (ii) raw binary data
provided by DeepState at runtime. To maintain functional parity with the DeepState
runtime, the binary parser should internally use DeepState’s public API for retrieving
values.

Toward the fulfillment of the requirements outlined in above, we have identified the
necessity for two sub-modules of the binary parser: (i) Binary Representation
Transformer, and (ii) Binary Value Iterator. Broadly, these modules must (i) receive
unstructured binary data from memory or from a binary file generated by DeepState,
and (ii) provide an iterator interface to transform this unstructured data into a valid
representation of one of the types outlined in Tables 1 and 2, respectively. To fulfill these
requirements, the need for 2 classes has been identified.

BinaryParser Class

Figure 5 shows the interface provided by the BinaryParser. The BinaryParser class
facilitates the parsing of binary data from arbitrary input streams and from an input file
specified by its string filename. The BinaryParser stores the data it parses in a vector of

13

bytes. This vector is copied to the internal data of the BinaryIterator returned by
getBinaryIterator(). Because DeepState generates a maximum of 4096 bytes per test, we
do not consider the cost of copying the data to be prohibitive.

Figure 5 - The interface provided by the BinaryParser class, complete with member and method

definitions.

BinaryIterator Class

Once raw data has been parsed from the unstructured input data, it needs to be
interpreted as the correct data types. To achieve this, we propose the BinaryIterator
class that provides an iterator interface to this binary data. This interface is proposed to
encourage separation of concerns: knowing the types the actual binary data represents
requires knowledge of the structure of the test, while interpreting the binary data
on-demand requires only knowledge of the requested type.

The BinaryIterator class provides an object-oriented interface to the existing DeepState
API for returning values from the unstructured binary data. This interface is shown in
Figure 6, where an abstract “nextT()” function that returns a value of type T is shown.
Internally, a function “nextT()” will return the result of “DeepState_T()”. The
BinaryIterator class contains a method of this form for each of the types shown in Tables
1 and 2. For example, the BinaryIterator contains the functions “nextInt” returning int,
and “nextChar” returning a character. These functions use “DeepState_Int()” and
“DeepState_Char()” respectively. For each item returned by the BinaryIterator, the
internal index is incremented by the size of the type returned. As a concrete example, a
call to “nextUInt” will advance index by 4 (sizeof(unsigned int)).

14

Type Unsigned Type Size (Bytes)

size_t 8

long 4

float 4

double 8

int64_t uint64_t 8

int unsigned int 4

int32_t uint32_t 4

short unsigned short 4

Table 1 - For each numeric type that will be supported by GenTest, the size in bytes is shown. If available, an
unsized type is also included. Note that for all type X where the type unsigned X exists, sizeof(X) = sizeof(unsigned
X).

Figure 6 - The interface provided by the BinaryIterator class. Instead of listing one method for each of the

types recorded in Tables 1 and 2, we specify a generic “nextT()” method that returns a value of type T. In the actual
implementation, for each type T specified in Tables 1 and 2, nextT() is defined.

Type Size (Bytes)

bool 1

string [1,4096]

Table 2 - For each non-numeric type that will be supported by GenTest, the size in bytes is shown. Because strings
are often variable in length, a string may be requested with a minimum length of 1 (not including the terminating
byte), and a maximum length of 4096 (the maximum supported by DeepState).

The Binary parser and iterator will be used in conjunction with the translation engine by
the file assembler to create standalone unit tests.

15

4.4 File Assembler
The responsibility of the File Assembler is to reconstruct the test file utilizing the
Translation Engine’s output as well as the Binary Parser to generate a standalone test
file that no longer requires DeepState to run. The File Assembler has two main
objectives. The first objective is the successful reconstruction of the standalone file.
Successful implies the operation of the file is identical to that of the DeepState test. The
second main objective is the correct insertion of DeepState generated values. The File
Assembler will utilize the Binary Parser for getting the generated values, then insert
those values into the parse tree for use in the construction process.

The structure of the File Assembler contains multiple parts, which are laid out in Figure
7.

File Assembler Class Layout

Figure 7 - UML Class Diagram for the File Assembler.

The first class in the diagram is the TranslationDictionary. The TranslationDictionary
class is utilized by the FileBuilder to find a translation for a NonTerminal (The base unit
for translation). The TranslationDictionary will take in a configuration file. This

16

configuration file will contain a translation for certain NonTerminals. LoadFile will then
be called, and the TranslationDictionary will build a translation list. This translation list
is a linked list utilizing the TranslationEntry. The File Assembler contains no public
facing parts, and is exclusively called from the GenTest process. The FileBuilder will
handle the process, with subclasses making the process increasingly robust.
Additionally, the Binary Parser will be called by the File Builder to acquire data to be
inserted into the symbolic value locations of the test. The FileBuilder will traverse the
parse tree given by the Translation Engine. Due to the tree structure, the FileBuilder will
be able to intuitively understand file scope. At the end of the process, the FileBuilder will
then output the standalone C++ test file not requiring DeepState to compile and run.

17

Section 5: Implementation Plan

This part is the project implementation timeline using a Gantt chart. The
implementation phase and personnel allocation of the project are briefly described in
the figure.

Section 5.1 Integration Stage 1

GenTest already gets onto integration stage 1. During this phase, we will incorporate
Harness File Translation and Binary Parser into one general system that can produce
output standalone tests. During stage 1, it is expected that most primitives will be
supported, but nested and non-nested structures will not be supported by system
execution.

18

Section 5.2 Integration Stage 2

During this stage, the GenTest team will take the integrated systems from Stage 1 and
add nested-structure support to the translation and value generation stages. This will be
the last step in the integration stage for the GenTest system before the overall system is
completed.

Section 5.3 Testing and Verification

During this stage, GenTest will perform several unit, integration, and requirements tests
to ensure that requirements have been met by the overall solution and to prevent
potential risks identified in this document. During this phase, unit, integration, and
requirements testing will be performed to verify that:

● The system does not encounter potential risks cases such as failing to compile or
having different outputs.

● Non-functional requirements are met.
● GenTest operates as expected and outlined in the functional requirements.

Section 5.4 Documentation

Once the system has been confirmed to work as expected, the GenTest team will focus
on documenting how to use the system to meet non-functional requirements. The team
will write documentation for GenTest on the GenTest GitHub repository.

Section 5.5 Product Client Review

At this stage, all core functionality for the GenTest solution will be finished, tested, and
complete. The GenTest team will hold a product review with the client to verify that it
meets acceptance criteria and it is to the client’s expectations.

19

Section 6: Conclusion

In its current form, DeepState provides an effective framework for accessing advanced,
automated testing tools such as Fuzzers and Symbolic Executors. Still, the platform
faces issues because of the costs associated with transitioning real-world projects from
more mainstream frameworks. For companies and developers, pre-existing testing cases
makes the incorporation of DeepState into testing suites difficult because it requires
costly rewrites before the features of DeepState are usable. GenTest aims to provide a
solution for developers, which enables them to maintain their testing suites in other
frameworks, while providing an easy and convenient way to use DeepState functionality
external to the library.

The purpose of this document was to provide an in-depth overview of the software
required to implement our client’s envisioned solution. By designing software that is
modular, well-documented, and thoroughly-tested, we anticipate the production of a
product that not only satisfies our client’s needs, but helps bring DeepState into the
toolbelt of every developer.

Although we are a small team working on a small problem, we envision a future where
catastrophic software failures are a relic of a bygone era. GenTest hopes that our
software, used in conjunction with DeepState, will help to provide a world where safe,
reliable software is the exception, not the rule.

20

Appendix A

The basic jargon and keywords for the project are defined below:

● Symbolic Execution - A process which analyzes a program to determine its
normal inputs and interpret them as an abstract symbolic value. This symbolic
value, λ (lambda), can be thought of as a variable (like in mathematics) which can
assume any value. λ is used by a language interpreter in-place of the actual value
it represents in computations and calculations. DeepState has a built-in Symbolic
Execution engine which is used to assume symbolic values in test files rather than
expressing the actual values of variables at compile-time.

● Fuzzers - Tools which produce automatically generated invalid, unexpected, or
random data as inputs to a program. DeepState includes multiple fuzzing engines
which can be used by developers to automatically generate data values for
test-cases written in DeepState test files.

● Test Replay - Test replay refers to the process of capturing, storing, or
monitoring the automatically generated values by DeepState built-in fuzzers (see
above) for later encoding into translated standalone test files in external C++
testing frameworks (i.e. GoogleTest, Catch2).

21

References

[1] “The Standish Group Chaos Report.” Project Smart , 2014,
www.projectsmart.co.uk/about-us.php .

[2] Williams, Laurie, et al. “On the Effectiveness of Unit Test Automation at Microsoft.”
2009 20th International Symposium on Software Reliability Engineering , 2009,
doi:10.1109/issre.2009.32.

[3] Jones, Capers. “Software Project Management Practices: Failure Versus Success.”
Academia.com , 2001.

[4] Lee, Gwanhoo, et al. “Ambidextrous Coping Strategies in Globally Distributed
Software Development Projects.” Communications of the ACM , vol. 49, no. 10, 2006, p.
35., doi:10.1145/1164394.1164417.

[5] Subramanian, Girish H., et al. “Software Quality and IS Project Performance
Improvements from Software Development Process Maturity and IS Implementation
Strategies.” Journal of Systems and Software , vol. 80, no. 4, 2007, pp. 616–627.,
doi:10.1016/j.jss.2006.06.014.

[6] M. Zalewski, “american fuzzy lop (2.35b),” http://lcamtuf.coredump.cx/afl/,
November 2014.

[7] Groce, Alex, and Peter Goodman. “DeepState: Symbolic Unit Testing for C and C++.”
Github , DeepState Repository, 2018, agroce.github.io/bar18.pdf.

[8] Evans, Scott. “The Toyota Recall Crisis - A Chronology of the Toyota Pedal, Floormat
Recall - Motor Trend.” Motor Trend , Motortrend, 27 Jan. 2010,
www.motortrend.com/news/toyota-recall-crisis/.

22

https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
http://www.projectsmart.co.uk/about-us.php
https://collaboration.csc.ncsu.edu/laurie/Papers/Unit_testing_cameraReady.pdf
https://s3.amazonaws.com/academia.edu.documents/35530814/200410-jones.pdf?response-content-disposition=inline%3B%20filename%3DProject_Management_Software_Project_Mana.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20191105%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20191105T041020Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=4e7fe5df3f3bee98a2668609f70b16a17dfd64393d4cd0131cb3cbdf44521d2e
http://fs2.american.edu/alberto/www/papers/CACM_2006_LeeDeLone&Espinosa_Ambidexterity.pdf
https://www.sciencedirect.com/science/article/pii/S0164121206001713
http://lcamtuf.coredump.cx/afl/
https://agroce.github.io/bar18.pdf
https://www.motortrend.com/news/toyota-recall-crisis/

