
G E N T E S T
Silu Shen Tristan Miller Zane Fink Joshua Johnson
Mentored by Fabio Santos
Client: Associate Professor Alex Groce, NAU

1

Team Members

2

Joshua Johnson

Team Lead

Silu Shen

Recorder

Zane Fink

Coder

Tristan Miller

Architect

3

About Unit Testing

● Unit testing - A test on a small, discrete

piece of code in a single code module.

● There are hundreds of unit testing

frameworks.

● Automatic Unit Testing can decrease

software defects by 62 ~92%

4

About DeepState
● Developed by Alex Groce and Trail of

Bits

Associate

Professor Alex

Groce

2. Provides built-in
automatic testing
tools open-source

1. A unit testing
library for C, C++
languages

5

Workflow

6

functionToTest(int x) : int

Typical manual

workflow

y = functionToTest(5)

y >= -1

DeepState

workflow

y = functionToTest(λ)

y >= -1

λ = 5, λ = 5023

λ = 1600382, ...

Problem Statement
● The current workflow is too coupled with the Deepstate library.

7

λ

Solution Overview
● Output code will be similar to that of a

manual workflow

● Outputted code will contain no references to

the DeepState library

● Replace value generation with hardcoded

values

● Outputted code should be compilable

● Outputted code should have identical

behavior

8

Solution Overview
● Utilize multiple data files

● Allows developers to view what values are causing issues

● Used by DeepState to output standalone tests for every test

9

Implementation Overview: Requirements
Key Requirements from conversations with client:

● Extension to DeepState that allows the creation of standalone tests.

● These standalone files must contain the values generated by DeepState.

● Generated values can be inserted variables and loops.

● Support for user-specified target testing framework syntax (Google Test, Catch2,

etc.)

10

Implementation Overview: Solution

11

● Inputs:

○ Unit test written in DeepState

Syntax

○ Configuration specifying

translation rules

○ Binary Data Generated by

DeepState

● Outputs:

○ Standalone unit test in syntax of

target framework

Architecture Overview: Translation Engine
● Breaks a test file down into an Abstract

Syntax Tree (AST)

● Provides an interface for traversal of the

AST.

12

Architecture Overview: Binary Parser
● Provides an object-oriented interface

to the DeepState runtime.

● For complete information on

supported types, see Software Design

Document.

● Used by the File Assembler to make

symbolic values concrete.

13

Architecture Overview: File Assembler
● Traverses the Abstract Syntax Tree (AST)

created by the Translation Engine.

● Using the BinaryParser, replaces symbolic

values with concrete ones.

● Produces standalone output file in

user-specified testing framework.

14

Architecture Overview: Integration

15

● The modules, with

ANTLR4 and

DeepState, work

together at runtime to

translate and insert

concrete values into a

standalone C++ test.

Challenges and Resolutions
● Complex syntax of C++ makes parsing it non-trivial.

○ Solution: The use of ANTLR4: a parser generator for C/C++

● Due to ANTLR4 C++ support being new, there are library integration problems.

○ Solution: Incorporating the ANTLR4 runtime into a build environment.

● Integration of GenTest software into DeepState source code is complex.

○ Solution: Discussions with DeepState team to ensure existing coding standards are

maintained.

16

Schedule

17

Conclusion
● The Problem

○ DeepState tests are highly coupled with DeepState itself

○ Need a way to increase portability

● Our Solution

○ Generates standalone tests without the need for DeepState

○ Standalone tests will utilize a testing framework of a users choice as

well as the generated values

● Moving Forward

○ Finish development

○ Begin testing of the final product

18

Conclusion
● Thank you for listening

● Questions?

19

