.o

v ‘
ey WG 3 Wm S LA A
s o ———- : s -

gy

e Only 16.2% of all software projects completed on-time
and on-budget in 2014 [1]

e Delayed and Canceled software projects cost companies a
combined total of $152 billion [1]

e (Companies need better ways to ensure project success

e Unit testing can reduce software defects from 20.9% to
91% in software projects. [2]

Unit testing can help companies save time and money.

e DeepState is a unit testing framework created Alex
Groce and Trail of Bits.

e It provides developers easier access to tools such a
fuzzing and symbolic execution.

e While manual testing techniques are viable, DeepState
provides a more comprehensive way to identify error’sf;'?‘;f'"

Associate code. o
Professor Alex : = X
Groce N

The Current DeepState Workflow

DeepState.hpp

#define TEST (...
##define TEST F (...
#define ASSUME (...
#define EXPECT (...
#define ASSERT (...
#define LOG(. ..

libdeepstate.a

‘ss_____,/////”‘—_——

3=

Tests.cpp

DeepState Assume:

DeepState_ Pass:

DeepState_ SoftFail:

#include <DeepState

TEST (Unit, Namel) ({
symbolic_int x;
ASSUME (x > 0) ;

}

TEST (Unit,

DeepState

-

Tests.o

Unit Namel Test:

call
DeepState_ Int

cmp eax, O

jg .LO

call DeepState_ ..
.LO:

.

/

The DR. is in.

%\

MANTICORE

Tests

0101010
1010101
0010101 =
0110101
0100101
0101010
1010101
0101010
1010101

S

0101010 / P

W

»

It can be hard to integrate with software
projects because of pre-established
frameworks.

Projects who may want to use the tools
provided by DeepState are unable due to
migration costs.

Solution Overview

The solution envisioned by team GenTest involves:

e C(Creating a module which will translate DeepState tests to other frameworks.
e Still provide support for auto-generated test cases.
e Requires no DeepState framework functions after translation.

DeepState. hpp

#define TEST (...
#define TEST F(...
fdefine ASSUME (...
#define EXPECT (...
#define ASSERT (...
#define LOG(. ..

=

Tests.cpp

libdeepstate.a

#include <DeepState
TEST(Unit, Namel) {
symbolic_int x;
ASSUME (x > 0) ;

TEST (Unit,

DeepState Assume:

DeepState Pass:

DeepState SoftFail:

DeepState_

3

Tests.o

o

Unit Namel Test:
call

DeepState_Int

cmp eax, 0

jg .LO

call DeepState ..
.LO:

&
MANTICORE

;\\\ Dynai®

/R!O

— The Dw. &= in.

Tests

0101010
1010101
0010101
0110101
0100101
0101010
1010101
0101010
1010101

0101010

GenTest

Standalone Tests in
External Frameworks

TEST(Unit, Name1)
intx =5;

ASSUME(x>0);

=> Bi-weekly Interviews with client
=> Reading DeepState source code

=> Working through DeepState tutorials

Extension to DeepState functionality that enables the
creation of standalone unit tests.

Support for translation to user-defined target testing
framework (Google Test, Catch?2, ete.)

e Functional Requirements

o Translation from DeepState testing
framework syntax into user-specified testing
syntax

o Insertion of values generated by DeepState
into standalone test files.

o Support for nested structures and looping
constructs

e Performance
o Simple command-line interface with no more than 5
required arguments
o DeepState users ean produce standalone tests within 3
minutes.
o Translated tests must be semantically equivalent to those
in the test harness

e Environmental
o No libraries outside of C+-+ STL can be used.

o (Generated code is in C/C++
o Cross-Platform support for Linux and MacOS

10

A Breakdown of the Test Generation Requirement

= >

Binary
DeepState 4)‘ Data

Hamess.cpp ———3 GenTest

!

Parse/
Translate

CFG

— translated.cpp

Risks and Feasibility

Risk Assessment of GenTest

Risk Probability Severity

Failure To Compile

Semantic Inequivalence

Unsupported Data Types
and Structs

Failure To Compile

O

Standalone tests are generated by
GenTest

Utilizes a Context-Free Grammar (CFG)
Probability of failure of compilation in
external framework

Mitigation: Use of logging will allow
developers to debug the GenTest process
faster and easier

13

Semantic Inequivalence Between DeepState Tests
and Standalone Test Output
o Abnormal behavior of generation and assembly
process
o Mitigation: Using a variety of test files
comparing DeepState and standalone test
outputs

14

Incomplete or Sparse Support for Data Types and Structs
o Currently plan to support
m The listed primitive data types, which
DeepState can support
m Basic Structs
o Stretch Goals:
m Nested and Recursive Structs
m Pointers
o Mitigation: Explicitly detailing supported features in
documentation

Char, String
Short

Int
Unsigned
Long
Int8 t
Uint8 t
Int16 t
Uint16_t
Int32_t
Uint32 t
Into4 t
Uint64 _t

Double, Floats

15

Schedule

Project Plan Overview

Product
Technical Demo } Client Review
Dec7 Apr 23
2019 Y ‘ Dec 2020 ‘ Feb Mar ‘ Apr 2020

A
Today

Technical Demo Harness
File Translation Creation- NOV19:-INGw2T

Technical Demo Binary Conversion
Creation- Nov 28 - Dec 6

Integration Stage 1_ Jan 20 - Feb 14
Integration Stage 2_ Feb 15 - Mar 13
Testing and Verification_ Mar 14 - Apr 10
Document Creation_ Apr 11 - Apr 22

The Problem
o DeepState-generated tests are highly coupled with
DeepState itself.
o Need a way to increase portability of tests.
Our Solution
o KExtension to DeepState
m Creation of standalone, self-contained tests
m Translation into user-specified testing framework
syntax
Our Plan Moving Forward
o Phase 1: Translation of simple tests

17

e Thank you

o (Questions?

18

