
Contents

1. Introduction 1
2. Unit Testing 3
3. Integration Testing 8
4. Usability Testing 9
5. Conclusion 12

1. Introduction:
Data storage is widely used and in high demand in today's interconnected

business ecosystem. For example, each day Walmart stores potentially several
petabytes of data due to the millions of transaction records, updates of inventory
stock, information of new customers, etc. Merchants are always required to
choose the best storage solution to avoid unnecessary overhead costs and provide
more comfort services for customers. Their solution is storage management
systems using cloud, tape, and disk.

Currently, cloud storage seems to be the best option for many companies. It
is affordable compared to traditional disk storage since it doesn't need to be
operated by the business itself and pays for itself in terms of ownership,
maintenance, and operation of servers. Merchants can rent these servers
provided by companies like Amazon and Microsoft. Most importantly, customers
can quickly access data stored on the cloud at any time, anywhere, with many
different types of devices.

Disk and tape storage are the other forms of storage systems IBM Spectrum

protect uses. Disk is one of the better storage solutions for quickly accessing data.
It is quite expensive compared to cloud or tape but if a customer wants to access
their data immediately then disk would be the right option. Tape ,on the other
hand, is a cheaper form of storage however it takes longer to access by the
customer, therefore, it is mainly for data that doesn’t need to be accessed
immediately.

Our project is sponsored by Daniel Boros who is a staff software engineer
in the IBM Spectrum Protect project. IBM Spectrum Protect is a generalized
monolithic server with cloud capabilities, which is designed to simplify
protection for large amounts of data hosted in physical, virtual, software-defined,
and cloud environments for all customers. Also, Spectrum Protect simplifies
backup administration, improves efficiencies in the backup process, and enable
scalability to an entire enterprise of inputs. Our project is committed to
improving secure enterprise level storage for IBM by providing a good solution
for classifying data into the appropriate storage tier.

1

As of now, the data that’s being stored by Spectrum Protect is often
miscategorized. An example would be data that should be stored in tape is now
stored in disk. This means that after a period of time it will get demoted to a
lower tier by policies in place to help categorize this data. These policies take
some time to take action and during the time that this data is getting demoted,
overhead costs for IBM increase the longer the data is in an incorrect tier. If the
opposite happens and data that should be on disk is now on tape, customers
might not be able to access their data quickly enough and depending on the
situation could waste time and money for them as well. The costs for Spectrum
Protect increase as more data is stored incorrectly which is why handling the
storage tier on ingestion is crucial. Our project is important because it can save
time, money, and effort that can be handled by this pipeline.

So far we have the desired pipeline that can preemptively categorize data

uploaded to Spectrum Protect into its correct storage tier to avoid unnecessary
overhead costs. To ensure our product is reliable and can categorize most data
into its correct storage tier, we need to perform multiple software testings on the
pipeline and make sure it satisfies all the goals and requirements from our
sponsor and our software design document. If a file that should be stored in tape
is now miscategorized into the disk. After a period of time it will get demoted to a
lower tier by policies in place to help categorize this data. These policies take
some time to take action and during the time that this data is getting demoted,
overhead costs for IBM increase the longer the data is in an incorrect tier. If the
opposite happens and data that should be on disk is now on tape, customers
might not be able to access their data quickly enough and depending on the
situation could waste time and money for them as well. The costs for Spectrum
Protect increase as more data is stored incorrectly which is why handling the
storage tier on ingestion is crucial. So implementing multiple software testings is
important for our product because it can make sure our product does function
correctly under any given inputs without any unexpected crashes or bugs. Also, it
is really important process to roll out our product to its final stage.

In our software testing plan, we will mainly focus on three parts: unit testing,
integration testing and usability testing.

2

2. Unit Testing:
Unit testing is the smallest testable “unit” of a software. The purpose is to

validate the behavior on a micro-level, that is, to validate the unit works as
expected only looking at the behavior of the unit. For example, a class may have
many methods and you would use unit tests to validate how each individual
method behaves not how the class overall behaves. The result, if every unit is
tested properly, is assurance each element is behaving as expected and makes
finding future bugs easier to identify.

For our project, we will be using pytest. Pytest is a framework for testing
relying on assertions in python. An assertion is a statement that must hold true
and therefore is the tested part of the tests. We are using pytest because of its
ease of use when programming, ease of integration, and the large level of
documentation because of the large following who use it. We will focus on test
coverage as a metric to ensure everything is tested. While test coverage does not
cause a system to be well tested it does correlate with a well-tested system. We do
acknowledge each unit needs to have proper domain and range identified and
elements that fall in and out of those need to be tested for proper behavior;
otherwise, test coverage has no real value.

The units we will be testing can be identified by breaking down two of our
three main modules. In breaking down our system into units we end up with the
following table (figure 3.1). Notably, one type of function is missing that is
present in our Learn module. These are model function wrappers that pass to a
profiling API we are using. We are not testing these functions because this would
serve to only test the API we are using. We are not unit testing the Driver aspect
of our project because it only serves to combine the other modules into a
pipeline. It is more appropriately tested in integration testing. The Display
module will not be described here because it serves only to draw the GUI
elements of our project. This is more appropriately tested in usability testing

Module Learn Process

 linearSVC combine

 multinomialRegression extract_features

 randomForest

 gradientBoosting

3

 save_model

 load_model

 validate_model

 data_metric

Figure 3.1

To test each unit properly we have identified equivalence partitions and
boundary points for each. We will outline them in order of the modules above;
Learn, Process, Driver, Display.

The learn module consists of two types of functions, model creation functions and
slots to buttons that are part of the GUI in Display. We will start with the model
creation functions. All of these functions take many parameters that are used in
creating the model. Many of these parameters repeat in multiple places and
represent the same thing in each of these places. For the readability of this
document, all of the parameters and their equivalence partitions and boundary
points will be defined once in table (Figure 3.2) and referenced as necessary.

The behavior of our model creation functions are expected to behave with near
equivalency. Because of this, we will not define the test for each but the template
of the test that will be implemented for each. The functions included in this are
linearSVC, multinomialRegression, randomForest, and gradientBoosting. The
function signatures are:

● def​ ​linearSVC​(df, feature_list​=​[​'BFSIZE'​, ​'HDRSIZE'​, ​'NODETYPE'​],
maxIter​=​100​, regParam​=​0.0​, threshold​=​0.0​,)

● def​ ​multinomialRegression​(df, feature_list​=​[​'BFSIZE'​, ​'HDRSIZE'​,
'NODETYPE'​], maxIter ​=​ ​100​, regParam ​=​ ​0.0​, elasticNetParam ​=​ ​0.0​,
threshold ​=​ ​0.5​)

● def​ ​randomForest​(df, feature_list​=​[​'BFSIZE'​, ​'HDRSIZE'​, ​'NODETYPE'​],
maxDepth ​=​ ​5​, numTrees ​=​ ​20​, maxBins​=​32​, impurity​=​'gini'​,
subsamplingRate​=​1.0​)

● def​ ​gradientBoosting​(df, feature_list​=​[​'BFSIZE'​, ​'HDRSIZE'​, ​'NODETYPE'​],
maxIter​=​20​, stepSize​=​0.1​, maxDepth​=​5​)

4

Parameter Type Equivalence
Partitions

Equivalence
Partition
Examples

Boundary
Values

df Spark
DataFrame

All valid Spark
DataFrame of
doubles with a
label column

All valid Spark
DataFrames of
doubles

All valid Spark
DataFrames
containing at
least one
non-double
column

All invalid
Spark
DataFrames

A valid Spark
DataFrame of
doubles with a
label column

A valid Spark
DataFrame of
double missing a
label column

A valid Spark
DataFrames with a
column of strings

A Spark
DataFrame formed
from malformed
CSV

A valid Spark
DataFrame of
doubles with a
label column

A valid Spark
DataFrame of
double missing
a label column

A valid Spark
DataFrames
with one
column of
non-doubles

A Spark
DataFrame
formed from
malformed CSV

feature_list List of
Type
String

All lists of
strings that
are columns
in df

All lists of
strings that
have entries
which are not
columns in df

All lists with
at least one
non-string
entry

When columns in
df are: (this, is,
one)
[‘this’ ‘is’ ‘one’]

[‘this’ ‘is’ ‘not’]

[‘this’ ‘is’ 0]

A list of strings
that have no
entries which
are not
columns in df

A list of strings
that have an
entry not in
columns in df

A list where
one entry is
non-string

maxIter,
maxDepth,
and
numTrees

Integer Positive
Integers

Non-Positive

12

-12

1, memory limit

0, - memory

5

Integers limit

elasticNetP
aram,
regParam,
setpSize,
subsampli
ngRate,
and
threshold

Double Non-negative
real number

Negative real
number

Non-real
number

12.7

-12.7

12j

0

-0.1 x 10^-n

real

impurity String ‘gini’ ||
‘entropy’

not ‘gini’ ||
‘entropy’

‘gini’

‘seven’

‘gini’ ||
‘entropy’

not ‘gini’ ||
‘entropy’

Figure 3.2

For each model function, we will test each case as defined above for each.
The expected output will be the same for each test. A tuple which contains the
results of testing the model, the model, and the data used to validate the model.
The output will be tested that all expected types are present, the results have all
expected metrics present, and that the results are well formed for transformation
into a log file. The model and data will only be tested for the correct type as
testing any further will test be testing the Spark API.

The other functions can be more easily individually defined but there is
still overlap in the parameters. The parameters can be defined by the following
table (Figure 3.3).

Parameter Type Equivalen
ce
Partitions

Equivalence
Partition Examples

Boundary
Values

model Spark ML
Model

A Spark
ML Model

Not a
Spark ML
Model

RandomForestModel

‘Apple’

Is a Spark ML
Model

Is not a Spark
ML Model

6

metrics Dictionary A
dictionary
object

Not a
dictionary
object

{‘is’: 6}

‘not’

Is a dictionary
object

Is not a
dictionary
object

file_location String A string
pointing to
a valid file
location

A string
pointing to
an invalid
location
String not
pointing to
a location

/anyone/can/write

/sudo/only/

apple

A file format
with access

A file format
without access

Any other
string

Figure 3.3

The save_model function has the following function signature def
save_model(model, metrics, file_location). We can test the model, metrics and
file_location parameters as described and to check for proper output we can
check there was a file saved in the specified location. The load_model function
has the following function signature load_model(file_location). We can test the
inputs for file_location as defined above and for correct output, we can check the
returns of the function the model, and metrics. We can check that the return
tuple has the correct types. Any further checking will be testing the API used to
load and save the model. The validate_model function has the following function
signature validate_model(model, metrics, testData) the first two parameters can
be seen in Figure 3.3, but testData can be defined as df in Figure 3.2. The return of
the function is an altered version of metrics holding the results from the
validation of the model. To test for correct output we can test three things 1) that
the returned type is a dictionary object 2)that it has all elements expected from
validation and 3) that elements relating to training the model are equivalent in
both the returned dictionary and in the metrics parameter. The last function is
data_metric which has the function signature data_metrics(metrics, trainingData,
testData). The parameters trainingData and testData can be defined as df in
Figure 3.2. The outputs of the function is an altered metrics object and can be

7

tested by ensuring 1) the returned object is of type dictionary 2) the dictionary
has the altered elements as expected 3) the dictionary has expected elements
unchanged compared to the metrics parameter.

The Process module has two functions combine and extract_features.
Combine serves as a helper for extract_features. Both functions have only
feature_list as a parameter to have inputs tested. This is the equivalent of
feature_list in Figure 3.2 with the caveat that df, in this case, is a DataFrame
combined in the combine function instead of being a parameter. Combine
returns a Spark Dataframe. We can test for correctness by testing two things 1)
The output is of correct type 2) The columns of the returned DataFrame contain
the elements of feature_list. Extract_features also returns a DataFrame but it can
be more thoroughly tested as there are more requirements. The following can be
tested 1) the return is of correct type 2) the columns contain only the elements of
feature_list as well as a column ‘label’ 3) there are no null values in any column 4)
all columns are of type float.

3. Integration Testing:

Integration testing can be considered as a level of testing above unit
testing. It is testing the combination of units and testing whether this
combination is behaving as expected. The importance is to expose defects or
faults in the interactions between components. The idea being all individual
components may work as expected but the components are combined in such a
way that it fails to function properly. The way we are approaching our
integration testing will be with a bottom-up approach. The strategy will be to
build up our end integrated system by testing each step of the build up. We will
use pytest for our integration tests, the scope of the tests will just cover more
components.

There are three main steps that happen in our system pipeline. The

preprocessing of data, creation and validation of a model, and the display of the
metrics. There is limited integration in our system so we only have two steps of
integration that we can test. The two components for testing will be the
combination of 1) the preprocessing of data and creation/validation of a model 2)
combination 1 and the display of the metrics.

8

To properly test our first integration we will take a subset of our code in
our Driver module and test the output of the model creation is as expected. This
code will have our extract_features function and the wrapper functions for our
models. We will test that 1) we did return a model and metrics as expected 2) the
metrics have all data we expect including:

● Model Parameters
● Learning Curve
● Model Name
● Features
● Accuracy Metrics
● Data Distribution

To test the next step of our integration we need to test the integration of

our whole system. This will be the processing of data, the model creation, and the
display of the model information. We can do this by directly testing the Driver
module main function. We would need to test the GUI is running as expected by
using the pytest-qt plugin. With the plugin, we can test all functionality of the GUI
by simulating user interaction as well as test that expected elements in our GUI
are present.

4. Usability Testing:
Usability testing is a necessary process for any large scale project in

software engineering particularly when the software is being provided to an
external client. It is important to ensure that once an end product has been
handed over that the user can actually use it in the way it was intended to be
used with ease. To ensure that the software we provide to our sponsor is usable,
we will provide a sample group from to test our product. To be able to gather
results that will reflect our end users, we must be careful about the population
from which we will choose the sample from.

Daniel Boros, our sponsor, is currently our sole envisioned user. For good

measure we should assume that he will not be the only person to ever work on
this project therefore we should assume our end user to be any staff software
engineer at IBM in Tucson. Unfortunately a team of software engineers is not at
our disposal to test the usability of our software. Instead we must choose a
population that is more readily available. Initially we thought to choose a sample
from a population of computer science students at NAU. However, not every
computer science student has the equivalent knowledge of a software engineer

9

working for IBM therefore we had to slim down the population. We decided it
would be best to choose a sample from a population of computer science students
who are either taking their capstone currently or have completed all the
requirements to take their capstone and would theoretically start at the
beginning of next semester. The sole qualification for participants would be
knowledge of linux distributions, specifically adeptness with terminal operations.
We determined that this was the best population to choose as we would have a
group of at least 30 qualified students from which to choose. Based on the
amount of feedback we expect to receive from each participant, we determined
that a study group of approximately four to six participants would be appropriate
for this study.

During the testing phase, there will be a set of guidelines in which we

would have to follow in order to get the best results and feedback. To do this
properly we must have a certain set of instructions given to test subjects as to not
give them step by step instructions on how to do everything. In our case the first
thing to do would be to ask the subject to download our project from our github
website. This should be a simple task easily completed by all of our participants.
Once the participant has a local copy of the project, we should ask them execute
the docker container where all operations can be run. Once testing of the docker
is complete, we will provide a pre-existing environment where the participant
will be asked to complete a set of tasks:

● The participant will be told to run the driver file with random forests
model with desired features that will vary per participant with
parameters maxDepth set to 5 and numTrees set to 20. Participant
will also be told they can use --help to look at our documentation

● Participant will be told to export data to the log file
● Participant will be told to run the GUI and have a visual display of all

the metrics and graphs generated by the learning and testing process
● Once in the GUI, participant will be asked to save a model, compare

two models, and re-test a model

As to avoid self report bias, a team member will serve as an evaluator for

the participant and lead the usability testing as well as record the time to
complete each section. Some questions we might have for the participant after
the test would be:

● Did you feel as though creating and training the model was straight
forward and a somewhat easy task to complete?

10

● If there was one thing you could change to improve usability during
this step what would it be?

● How useful was our documentation?
● Was exporting the data and displaying the GUI straight forward and

a somewhat easy task to complete?
● If there was one thing you could change to improve usability during

this step what would it be?
● How difficult would you say it was to navigate through the GUI’s

features? If any section was difficult, what was wrong with it and
what would you do to improve it?

The decision based on the feedback of the participant should be discussed

among the team and dealt with accordingly. Once the feedback of the participant
has been taken into account and has been determined that a change is required,
the change will be implemented. If a participant does not give any constructive
feedback but the time taken to complete the tasks was unnecessarily long then
follow up questions might be necessary to pinpoint exactly where the delay
occurred.

We hope to gather all participants together to study the testing phase at the

same time if possible. Our testing process involves subjects who have a
background in computer science and a higher than average problem solving
ability therefore our directions and questions can be a lot more vague than most.
Being able to discuss software specific details with participants will greatly
increase our ability to improve our product’s overall usability.

We hope that this testing phase can provide us with helpful feedback and

suggestions for change so that we can deliver a better, easy to use product to our
sponsor.

11

3. Conclusion:

In conclusion, we created this software testing plan for the purpose of
performing multiple software tests for different components of our pipeline and
verifying that all the components of our pipeline can communicate correctly and
run as it was intended to. More specifically, we use three methods of software
testing mentioned above to look into our code and fix minor bugs. In the unit
testing, we can write specific tests for each function of our pipeline and make
sure these “units” work correctly. Then we want to use the integration testing to
check that all the modules perfectly worked together. At last, we will perform
usability testing to ensure that the usability of our end product is suitable for our
sponsor.

12

