
Software Design
Version: 2.0

 Team: Orion
Sponsor: USGS

2/15/19

Mentor: Isaac Shaffer
Client: Dr. Laszlo Kestay

Sponsor: USGS

Team Lead: Brandon Kindrick
Version Controller: Chadd Frasier

 Code Designer: Yuxuan Zhu

Table of Contents

Introduction …………………………………………………………………. 2
● 1.1 Project Introduction ……………………………………………. 2
● 1.2 Problem Introduction ………………………………………….. 2
● 1.3 Solution Overview ….………………………………………….. 3
● 1.4 Solution Conclusion . ………………………………………….. 4

Implementation …………....…..………………………………………….… 4
● 2.1 Implementation Overview …………………………………….. 4

Architecture …………...…...….…………………………………………….. 7
● 3.1 Architectural Overview ………………………………………… 7

Module and Interface Description ……………………………………….... 7
● 4.1 Upload Class ……………………………………………………. 7
● 4.2 User Interface Class …………………………………………… 8
● 4.3 ISIS Functions Class …………………………………………… 9
● 4.4 ISIS Header Data Class ……………………………………….. 9

Implementation ……..……………………….………………………………. 9
Conclusion .…….……………………………………………………………. 11

1

Introduction

1.1 Project Introduction

Planetary science is laying the foundation for humanity to become a space-faring
species by discovering more about the geography of our neighboring planets. In recent
decades, The National Aeronautics and Space Administration (NASA) has achieved
more advancement in the field of planetary science than anyone could have predicted.
What we can't ignore is the fact that the United States Geological Survey (USGS) has
also played a vital role in this development. NASA works closely with the USGS to meet
all of their data processing and research needs. The USGS has spent more than 30
years developing the Integrated System for Imagers and Spectrometers (ISIS) to
decode and examine these massive binary files from NASA’s imagers. ISIS decodes
these files and retrieves the images, and metadata that goes along with them. Using the
metadata, ISIS can be used for geospatial research. These precise topographic maps
produced by ISIS are used every time researchers look for new potentially landing sites
on the Moon, Mars and other distant planetary bodies. The USGS’s contribution to
space exploration is the accurate geospatial maps it produces, and without them you
are lost in space.

1.2 Problem Introduction

We are team Orion and we have been given the opportunity to work with the
USGS on the Planetary Image Caption Writing Project. Our client, Dr. Laszlo Kestay is
a Research Geologist at the USGS. One of his regular tasks is producing publications
on research he and his colleagues have conducted. This is where the problem resides.
Dr. Kestay’s current workflow for producing publication images is currently as follows:

● Load an image into ISIS
● Extract the Metadata
● Calculate by hand where he needs to crop image using ISIS qview
● Calculate how large his scale bar should be and draw it in a third party program,

like Photoshop
● Repeat process if he needs to re-crop the image or needs to add additional

graphics for metadata

This process is tedious and can take anywhere from 2-3 hours, making him reluctant to
make images for his publications. This is where team Orion comes in. Dr. Kestay has
tasked us with helping him streamline his publication image making process.

2

1.3 Solution Overview

Based on the requirements for this project, we have decided to implement a web
app for our solution. By using a web app, our product will be usable on almost any OS
platform. Using a web app will also give us access to all of the powerful web libraries
that exist; like Openlayers, Node JS and Web Frameworks like Flask. Using a web app
for our solution, means we will need to include ISIS with our app installation. ISIS is
currently only available on Unix systems (Linux, OSX, etc.). To avoid alienating
Windows users, we decided to use Docker as our installation method. Docker is a
virtual “container” that acts like a virtual machine. With Docker, we plan to install linux
(Ubuntu), and ISIS as well as our web app. This allows us to effectively install and run
ISIS on Non Windows systems. To host our web app, we need to host it on a local
server. To accomplish this, we are going to use the Flask framework. Flask, offers a
wide array of tutorials and seems to be more beginner friendly than some of its
alternatives. It also has extensive documentation and all of our team members know
python. Finally our web app has to have the following functionality:

● Upload .cub images
● Crop .cub images
● Extract metadata from .cub images
● Add graphics to image based on extracted Metadata
● Export image
● Export metadata in CSV format and also in a specialized template used in

publications

To implement this functionality with our web app, we plan on using base Flask and
python for setting up the foundation of the web app. For implementing functionality of
cropping and exporting of an image, we plan on using the Openlayers library. This
treats base images as a “map”. Map images can be easily cropped and exported to a
number of formats. Because Openlayers is used for maps, it can also take into account
more complex map phenomenon, like shortening a scale bar when close to a pole.
 In summary, our solution will include the following:

● A Docker container that includes:
○ Ubuntu installed
○ A Flask web server hosting our front facing web app
○ ISIS

● A front facing web app with all functionality outlined above

3

1.4 Solution Conclusion

Our outlined solution covers all of the requirements of the project. The first issue
being installation of ISIS on systems other than Unix. This is solved by us using a
Docker container for our project. This allows us to install linux and ISIS in a small
contained environment. The next major requirement is the ability to easily interact with
ISIS. We accomplish this by implementing a web app that can communicate with ISIS.
Due to it being installed in the same location as ISIS, it will be able to call ISIS
commands from terminal using Flask commands. Being able to interact with .cub
images and add graphics to them will be accomplished with the Openlayers library. To
make the web app we implement available to the user, we are going to host it on a local
server from the Docker container. The user will then be able to open the app from their
browser.

Implementation

2.1 Implementation Overview

In accordance with the project’s requirements, we have decided that a web app
built with and hosted by Flask is the best solution because it is written in Python which
all members of our group are familiar with and Flask provides a lighter framework in
contrast to Django which is a very large framework. Our application will consist of two
main portions; the Flask frontend, where users will give input and interact with buttons
and images, and then the ISIS3 backend that will be performing all of the calculations
on the files.

In order to make this application secure we will be developing it inside of a single
Docker container. Docker is a lightweight, fast and extremely portable standardized
environment that allows for development of web applications on a local environment.
This allows for our tool to be secure in its own environment, with no overall access to
the computer it is run on. This allows it to be run on any computer without security risks.

We decided that Flask would be the best option for building our user interface

and front facing web app. Flask is a python framework that allows for building/ hosting
web pages and apps on a local network. Compared to Flask’s alternatives; like Django;
is much smaller and easier to set up. Flask does not follow the Model View Controller
architecture like Django does, which results in a much easier to install, lightweight
application. Flask also is much easier to find resources and tutorials for due to the larger

4

user base. The primary reason for choosing Flask over the alternatives is availability of
resources, the package size difference and because all of our group members know
Python already.

Our application will be working off a client-server architecture where the clients

can connect to a server that is running our Flask frontend. All the data from the user will
be forwarded to the ISIS portion of the container and then returned to the client. We
decided that ISIS will be run on the backend because doing this will allow us to use the
ISIS command line functions from the Flask application. This will give us access to the
suite of image editing functions provided by ISIS. ISIS can also natively extract
metadata from .cub files. The approach outlined above is an overview of our web app
implementation.

5

6

Architecture

3.1 Architectural Overview

Starting from the beginning of our primary use case, the user will be prompted to
upload a .cub file to set the whole process in motion. The system will be required to
validate the file type of the upload before passing it to ISIS3. Once the file is validated
for a proper file type, the file will be passed to ISIS3 to be deconstructed and stored for
later access. In order to more easily manipulate the image from ISIS3 we will convert it
to a more standardized image to allow for easier importation into Flask. After we have
the image and metadata prepared we will use the Flask HTTP resources to post the
new image and data to the web app. After the image is properly displayed the user will
be able to crop, highlight, and add icons to the image. The user will have the freedom to
export the image as soon as it has been properly uploaded. If the user chooses to
manipulate the image we must decide what type of manipulation it is. If it is a data
involved manipulation we can add icons or bars using the metadata. If it is a photo
manipulation such as cropping we must pass the file and pixel locations to the cropping
function on ISIS3 and return the newly cropped image and metadata using a template
and passing it the new image file. If the user applies both image and data changes, we
must manipulate the image before the data because the metadata will change after the
image is cropped. After we display the newly updated web app we again will allow the
user to further manipulate the image or the user can begin the exportation process.
When the user starts exporting they must begin with a simple interface that configures
the save file path and type. After the user selects an appropriate file type and path they
can click a button to begin the export. We will then need to prepare the output files
using functions that read the users output settings and prepares either the images or
the metadata or both into proper file types.

Module and Interface Descriptions

4.1 Upload Class

The system will begin with an Upload class that will be responsible for informing
the user to upload an ISIS3 cube file and present a window interface for the file upload.
We will achieve this by creating an UploadFile function that will utilize a helper function
to verify the user’s input. We will only be
accepting cube files and if this function
does not pass then the user will be

7

prompted to retry a new file. After the file is verified we will pass the file to a create Isis
Command function that will format a sting that can be passed to an ISIS3 decoding
function. After we create the command string we will submit it to the ISIS3 portion of the
Docker container where a function can read the command in from the frontend and
perform the necessary commands in the ISIS software. The main interface will receive
the image and metadata from ISIS and store it on the web app for better access. The
upload class will also be responsible for configuring the ISIS API and shared folder
locations of the application. After a successful upload, we can parse through the cube
metadata and retrieve the instrument that is currently being used, the commands that
that instrument uses.

4.2 User Interface Class

The user interface class will be
responsible for all of the user interactions
with ISIS. The user interface will consist
of check boxes and buttons to add and
remove icons from the image as well as a
large photo view. Checkboxes will be
used for selecting which metadata to
display. Buttons will better for things like
adding icons to the image because ISIS
can help us calculate where it will need to
appear. We will be using buttons to apply
image changes and icons. The cropping feature for example will work in a similar
manner to the cropping features in most word processors. A button with scissors on it
that will change color or look in some way when clicked to denote that it is in cropping
mode. When cropping we will track the mouse location and allow the user to create a
rectangle outline on the image that will be the newly cropped image. Four coordinates
will be sent to ISIS. To accomplish this, we will send the four coordinates and use the
ISIS crop function to return the final cropped image.

We will need to validate every aspect of the the commands before sending it to

ISIS3. We will associate buttons of the UI with batches of commands for ISIS3. For
example the cropping feature would take the input and from the user in the form of a
outlined rectangle we will save the size of the rectangle, the location of the top left
corner of the box in the form of pixels away from the edge. We will then want to use the
isis2std function to change the image format to a png that can be very easily
displayed onto the web app. We will need these types of functions for adding every icon
including the Sun azimuthal direction, a north arrow indicator and the observer location.

8

The user interface will also have a function that will add highlighted areas to the image
to help the user bring attention to portions of the image.

4.3 ISIS Functions Class

The ISIS control functions
will be invoked by the buttons on
the user interface and these
functions will act as a restful api to
perform the necessary actions on
the cube file and return the new
image. The api will need to verify
each piece of the command that it
receives and perform commands
in the correct order when required to do so. After changing a cube, ISIS3 will need to
create an image that Flask can display. Using an api to manage these processes will
create a fast and easily maintainable interaction process between the web app and
ISIS. Writing a simple api in Flask will create a very simple and fast HTTP handling
system. The api will handle all the commands and return the image by running a
conversion function on the image and icons to be included. We will need to run a
function that sends the new data back to the client after the functions are run and the
Flask GET and POST functionality will make this job simple.

4.4 ISIS Header Data Class

We will create a class that is devoted to storing and retrieving the ISIS header
data that our application requires. It will be easier to efficiently store this data by
creating a configuration function that will convert the ISIS header data from a json
format to a python dictionary. We will use a dictionary to take advantage of the
key-value format that python is capable of. Using a dictionary in this case will allow us to
access any piece of metadata with the exact same variable name and a unique key.
After the data is properly configured the ISIS header data class will be responsible for

updating the dictionary if the values are changed,
either by cropping or by rotating. This will require
two functions, one for checking to see if the data
new data is different than the current dictionary
and a function to overwrite the dictionary if need
be. In order to test and change the values we will
need to write a generic get and set method that

reads the input in an effective way so that we do not need more than one function for
the data. The getter function will return the value of the key it is given, this means that

9

we will need to validate the output before passing it to other functions or comparing it
against other values. The setter function will only be called in the update function to
prevent from accidental overwrite.

Implementation

In this section, we are going to provide a design-centric implementation timeline
for our project. We designed a gantt chart to reflect each required task related to the
project. Using a gantt chart helps to plan, coordinate, and track specific tasks in our
project. The following is our team’s current gantt chart:

In the Gantt chart shown above, we have provided a detailed schedule of each

module in our project. Each task is assigned to a specific team member who will lead
the development of said task.

10

The first task is the Environmental setup. This is the basis of our mission and
includes several modules. As we mentioned in “Implementation Overview,” we will use
Flask for our front end, and ISIS3 on our backend to perform all of the calculations
needed. Both the front end and back end are included in the Docker container, ensuring
security of our app and availability on most OS platforms. The USGS has created a
Docker container image on Github that provides everything needed to run our web
application: code, runtime, system tools, system libraries and settings. Our first task is
to setup our Docker environment and establish basic ISIS/Flask communication. We
have installed the ISIS Docker image on our laptops and installed Flask inside the
Docker container. The next step is to build a basic communication messaging system
between Flask and ISIS3 using Flask to call ISIS commands at runtime.

Our second major task, as well as our full tech demo step, is “Image Caption

Writer Frontend.” We will build basic frontend functionality which includes all the
features our customer required. The main features will include cropping the image,
adding standardized graphical symbols for specified geospatial information, retrieving
additional geospatial information in a subsection, extracting the data in a readable
format, and finally exporting the user’s image with all the added icons and data pieces.
After implementing these functions, we scheduled time to test hosting capabilities for
our web tool. Because we use a Docker container and a Flask server inside, we must
make sure all these things work and will have a long life.

Finally, in the “other” section, includes two very important tasks. They are

debugging our web application and showing it to our client. We will need to ensure that
Dr. Kestay is comfortable with our installation process and with the functionality of our
UI.

Conclusion

We are team Orion, and we are working with the United States Geological
Survey (USGS) on the Planetary Image Caption Writing Project. Our client is Dr.
Kestay, who is a Research Geologist who has worked at the USGS for many years. It is
well known that images in space publications are at the heart of sharing information and
gaining public interest. The problem our client is facing now is having no convenient
way to extract the metadata contained in images other than by ISIS3 command line
calls and a pencil. Dr. Kestay has to manually extract the metadata by using the binary
editor on the ISIS3 file and then type into a document. If he wants to build annotations

11

on the image, he has to use Photoshop. The whole procedure takes a long time and is
incredibly tedious.

To solve this problem, Our team plans to repackage ISIS and make it accessible

on any platform via a web tool. It will include a user friendly “viewer tool” on the front
end. Our goal is to make the app accessible to anyone whether they are an experienced
programmer or someone who has never touched a programming language. We will use
the Flask framework to develop our front-end that allows users to process an image,
edit metadata, and finally, export the user’s image with all the added icons and
metadata. For the backend, we will use ISIS3 because it already has all of the functions
we want for our web tool. It will process requests sent by front-end and run
corresponding commands then send the result back to the user side. We will develop
this web application inside of a single Docker container. Docker allows our team to
package up our web application with all of the parts it needs, such as libraries and other
dependencies, and ship it all out as one package. As a result, our web application will
run on any machine, regardless of OS installation.

Through this document, we have outlined the overview of our product. By going
over our client’s requirements and his problems, we have found the problem. Our
solution overview addressed each part of the problem and how our solution address it.
We have also gone over the technical layout for our product. We addressed how we
plan to implement our solution. Following the schedule reflected in our Gantt Chart, and
by following the design of our project, we are confident we can provide the product that
will satisfy our client’s requirements and better the production of publication ready
images.

12

