

4/3/2017

Software Testing
Documentation
Team U.I. Fit – Version 1.0

Team Members:
Charles Chatwin
Matthew Burns
Tanner Brelje
Joshua Gutman

Sponsor: Dr. Abolfazl Razi
Mentor: Dr. Abolfazl Razi

The purpose of this document is to provide a timeline and
implementation plan for testing BioNetWeb.

1

TABLE OF CONTENTS

Table of Contents 1

Introduction 2

Unit Testing 4

Web Portal 5

Database 6

Visualizations 7

Web Services 8

Integration Testing 9

Usability Testing 12

2

INTRODUCTION

The field of molecular biology is an ever advancing science that requires tedious experimentation and

research. In order to generate concrete research results, many molecular biologists must place precious time and
resources into large-scale experiments. These experiments are used to show the process of biochemical
molecular interaction, or in layman’s terms, the result of the reaction between two or more molecules. In order
to aid this meticulous process, Northern Arizona University graduate Brandon Thomas, in tandem with an
experienced team of graduate students and molecular biologists, created the program BioNetFit. BioNetFit is a
command line tool that was created to provide a fast and easy method to simulate complex molecular bonds.
These simulations allow researchers to later run the tests in a real environment in a way that gives them a degree
of confidence in the expected interaction.

Built on top of BioNetGen and NFSim, BioNetFit allows researchers to simulate a single experiment

many times with a range of parameters. The results of each of these simulations is compared to an experimental
results file that the researchers upload. Because the combinations of different parameters scale non-linearly,
various methods are used to select the best combinations of parameters, including genetic algorithms, simulated
annealing, and a few others. After the simulation has been run many times (usually thousands), BioNetFit
creates a final output file that shows information about the molecules involved in the reaction.

While the program is incredibly useful, its implementation is not user friendly. It exists as a unix-only,

command line tool. Researchers who are not technically proficient will struggle at getting the program to run
and will attempt to find other avenues when faced with having to spend time learning a new system to run their
tests. Additionally, the results currently output by the program are difficult to digest, and do not lend themselves
easily to analysis for data collection by researchers. Without much labeling or clear direction in the results,
researchers will have to extract results from a command line output, which as previously discussed, is
problematic for many scientists. Lastly, the program cannot run large scale experiments in a short amount of
time. This lessens the practicality of the program as the experiment becomes more and more grand in scale. In
order to make BioNetFit the stellar application it can be, these issues need to be addressed. If done correctly, the
program could see widespread use in molecular biology labs all over the world.

Created in order to tackle these challenges, Team U.I. Fit, composed of Charles Chatwin, Matthew

Burns, Tanner Brelje and Josh Gutman, will develop software solutions in order to turn BioNetFit into the
powerful program it can be. Led by client and mentor Dr. Abolfazl Razi, our team will aim to:

 Create an attractive and simple web portal for BioNetFit.
 Visualize the results of BioNetFit into easily digestible data for researchers.
 Implement parallelization in order to run large experiments on a computer cluster.

Firstly, our team will develop a simple and effective Web 2.0 Graphical User Interface that will house

the BioNetFit software. This web page will be easily accessible and easily usable by any researcher who wishes
to run tests using the BioNetFit software. In the web portal, the user can either create their own BNGL file from

3

scratch, or upload one that was either previously downloaded, or was saved remotely on the website itself. From
here, the user can run the file either locally on their own system or, in the case of a large file, run the file on the
computing cluster Monsoon, available on the Northern Arizona University campus. From there, the program
will output a configuration file that will be visualized to the user using graphs and charts. Finally, the user can
either save and visualize the outputs on the website, or download them to their own local machine. The BNGL
files can then be tweaked if wanted, and the experiment can be run again.

In this document, our team will outline the testing that will take place in order to ensure that the
BioNetFit software solution is working to its full potential. In order to label these tests, we will split them into 3
categories, Unit testing, Integration testing, and Usability testing. Each of these categories will delve into the
specifics of the software in its current implementation of the software solution, with each of the specific tests
assuring the usability of a certain aspect of the software. The testing and protocols will be laid out in each
section, with information pertaining to how the test will be implemented, and what the expected result of each
step of the testing is. The final result should be a comprehensive guide to understanding how we as a team are
planning to ensure that the BioNetFit software solution is one that will be resistant to bugs and possible failures
that may be unforeseen.

4

UNIT TESTING

The first section of testing for the BioNetWeb software solution is dedicated to the unit testing of the

software. The purpose of a unit test is to delve into the individual aspects of the software, and ensure that each
of the most pivotal pieces of the software work correctly as intended. In order to dissect and create test for each
of these pieces, we must first divide the software solution up based on its main components. From there, we will
dive deeper into each of these components, looking at what sections of code specifically fuel each of them. Once
we identify these code segments, the final step will be designing and implementing a testing strategy. We will
delve into what packages and techniques will be used for the test, as well as a timeframe or strategy for how the
implementation will take place. With that in mind, let us first identify the main components of the software
solution.

In its current state, we can break the solution up into 4 main sections:

o Web Portal
o Database
o Visualizations
o Web Services

1. The Web Portal section deals with the interface that is seen by the user. These are the building blocks

that display the website in its finished state to the user. In order to ensure that the U.I. works to its full
potential, we must ensure that factors such as login, web navigations, etc. work correctly and catch
expected errors.

2. The Database section deals with the MongoDB that is implemented on the server that has been provided
by NAU web services. In order to ensure that the database is a stable addition to the software solution,
factors such as data insertion, retrieval, and storage work without issue.

3. The Visualizations sections regards the graphs and visuals that are generated by the solution in order to

help users to make more sense of the results that are generated by BioNetFit. Factors that require testing
in this area are accurate graph generation, dealing with errors in results, etc.

4. The Web Services section includes both the server that is going to host the website and database, as well
as the provided virtual environment that has been provided for the use of the website. While most of the
interactions between our own solution and the provided services are mostly out of our control, we can
be sure to plan in the events of server shutdowns and restarts, as well as testing to ensure the site cannot
be accessed outside of the NAU VPN.

5

WEB PORTAL

 The web portal of the website is the most important part of the entire implementation, as it provides a
bridge between the user and the BioNetFit software. Because of this, it is paramount that the functionality of the
website be near perfect. The implementation must account for not only what is expected of the website, but must
also handle possible errors that can happen within the code. With that in mind, we will be implementing tests of
the following segments in order to ensure that the code will work as expected:

o File upload accepts/processes only the correct file formats.
o Parameter generation creates only acceptable parameters.
o Login functionality allows for seamless account access.
o Website does not hit dead zones/ pages that do not exist.

Note that this is not a complete and comprehensive list of all tests that may be implemented in this

process, however these factors are some of the most important within the website, and will be given priority
when generating the unit tests. For each of these tests, we will outline the issue that we want to eliminate, how
we plan to approach the test, any libraries that may exist in order to assist the process, and the expected result of
each of the tests. This process will also be used in the generation of tests for the other three sections of unit tests
that will be outlined within the paper.

Issue Approach Implementation Result
File upload must only
take in files of the
expected types.
Uploading incorrect files
may cause the service to
crash or run into errors.

Generate a test that
intentionally tries to
upload correct and
incorrect file types.

The ability to process
and understand whether a
file is of the correct type
is included within the
assertions provided by
HTML and python.

The web portal will
accurately identify
whether a file is of the
correct type, and will
either correctly process
the file, or handle the
incorrect file and return
an appropriate error
message.

The parameters
generated within the GUI
must not be able to
include values that are
not accepted by
BioNetFit.

Generate a test that tries
to push the boundaries of
each parameter.

For each of the possible
parameter, a range
checker will
implemented in Python,
which will check the
given parameter value
against the possible
range of values.

The web portal will
accurately identify
whether a parameter is or
is not allowed within a
config file, and will
ensure that files with
incorrect parameters will
not be used.

Login functionality must
allow for seamless login
and account access.

Generate a test that tries
to login with real and
fake accounts.

Django is able to register
whether a login attempt
is valid. We must ensure
that python processes the
registration correctly.

The web portal will
allow for the login of real
accounts, while rejecting
fake ones/ providing
error messages.

6

The website itself must
not allow any deadzones
under its URL, meaning
non-existing HTML
pages must transfer to
accurate, existing pages.

Generate a test that
attempts to visit HTML
pages that do not
currently exist under the
current implementation.

Django has options that
allow programmers to
reroute incorrect page
requests to HTML pages
that exist specifically to
be a landing page for
incorrect requests.

The web portal will
accurately differentiate
between correct and
incorrect HTML
requests, and will reroute
the request based on the
unit test and Django.

DATABASE

 The database of the website is done in MongoDB. MongoDB is what is considered a NoSQL database.
This means that the database does not have a specific format or structure that it must adhere to. While this
allows for a lot of freedom when it comes to the implementation of the database itself, we must ensure that the
space is being used effectively. In order to ensure this, we will implement two unit tests that will ensure that the
database not only has some form of structure, but also does not accept files that would be too large, causing an
inordinate amount of data to be used by the server. Therefore, the tests will explore the following factors:

o Users and files attached to users will be inserted with a specific format.
o The database will not allow files deemed too large by the system.

Note that this is not a complete and comprehensive list of all tests that may be implemented in this

process, however these factors are some of the most important within the website, and will be given priority
when generating the unit tests.

Issue Approach Implementation Result
User and file storage
must follow the same
formatting in the
database.

Generate a test that
intentionally tries to
create correct and
incorrect user->file
relations.

PyMongo allows for the
implementation of
MongoDB syntax within
python files. From here,
we can apply python
assertions to the entry
strings.

The database will
accurately identify
whether a user is of the
correct formatting, and
will handle and return
error message for
incorrect formatting.

Files stored within the
database must not exceed
a certain size. This size
will be determined as
further implementation is
done.

Generate a test that tries
to upload and insert files
that take up too much
space on the database.

PyMongo allows for the
implementation of
MongoDB syntax within
python files. From here,
we can apply python
assertions to the files.

The database will
accurately identify
whether a file is of too
large and size, and will
reject the upload and
handle the error if the
size is detected.

7

VISUALIZATIONS

 The visualizations of the BioNetFit results is arguable the second, or possibly even the most important
portion of the software. The visualizations and graphs that are provided by the website must not only be
readable by the people who use the software, but they must also be accurate to the data, as well as be useful to
those who will be deciphering the data as a whole. Unit testing of the visualizations may prove to be tricky, as it
is not likely that we will be able to feasibly employ image processing within the confines of a unit test. With that
said however, there are ways that we can test the actual data that is used by the visualizations themselves. If we
can test and ensure that these values are correct, than testing the actual generated images will not be required. In
order to test these values, we will look into the following three issues.

o Is the best fit generation being used in the visualization?
o Has the average of the generations been calculated correctly?
o Handles and acknowledges bad data.

Note that this is not a complete and comprehensive list of all tests that may be implemented in this

process, however these factors are some of the most important within the website, and will be given priority
when generating the unit tests.

Issue Approach Implementation Result
Visualization must use
the correct best fit
generation file.

Generate a test that
provides 1 correct and
multiple incorrect files.

BioNetFit does not
currently have unit
testing that can check a
correct best fit, so it will
be up to us as the
developers to introduce
our own solution.

The visualization will
correctly select the best
fit file, rejecting the
remainders and notifying
the test of its decision.

Visualization must
accurately calculate the
correct average
generation.

Generate a test where the
average has been
manually calculated, and
test the output of the
program against this
case.

BioNetFit does not
currently have unit
testing that can check a
correct best fit, so it will
be up to us as the
developers to introduce
our own solution.

The visualization will
correctly generate the
average of the provided
files, and will compare
this average to the test.

Visualizations must be
displayed to the user
within the HTML. The
visualizations also
acknowledge bad data
and alert the user of such.

Generate a test that
attempts to generate a
visualization with both
usable and unusable data.

D3 offers libraries ensure
that data being used is
correct, and will
additionally make use of
python unit testing.

The visualization will
appear correctly in the
case of data that is
usable, and will manage
and return accurate error
messages for data that is
deemed poor.

8

WEB SERVICES

 In the final section of the project, we will focus on the Web Services aspect. Truth be told, as developers
who will be simply using the NAU services to host the website, as well as simulate a Monsoon environment,
there is little control that we have in the actual implementation of this aspect of the website. We will discuss this
section more in depth in later portions of this document, but as of now there are few aspects of the servers that
we can design unit tests for. As for the Monsoon environment, it is important that we do not overload the
environment with too many tasks. Therefore, our main unit test for this section will address the following:

o The Monsoon virtual environment will not become overcrowded with requests.

Note that this is not a complete and comprehensive list of all tests that may be implemented in this
process, however these factors are some of the most important within the website, and will be given priority
when generating the unit tests.

Issue Approach Implementation Result
The provided Monsoon
virtual environment must
not be bogged down with
a high volume of
requests.

Generate a test that
attempts to overload the
Monsoon virtual
environment with
requests.

In order to handle this,
the tests will likely be
done directly within the
Monsoon environment.
We will have to delve
into options that will
allow us to limit the use
of the environment.

The Monsoon
environment will
recognize when it has
been requested to do too
many jobs, and will
reject new jobs provided
by the test.

9

INTEGRATION TESTING

 The next two sections of testing will delve into the interactions between the components of the software
solution itself, as well as the interactions between the end user of the software and the solution itself. In this
section, we focus on the former. Because there are many separate parts of the solution that must work together
correctly, it is paramount that the pieces mesh with little to no error. In order to digest what needs testing within
the system, we will split up the testing based on the possible interactions of the software. These interactions
include:

o Web Portal  Database
o Web Portal  Visualizations
o Web Portal  Web Services

For each of these interactions, we will explore the events that would require the two sections of the

solution to interact, as well as the possible errors that could occur, and a detailed plan for testing in order to
avoid complications when the interaction must by implemented and work seamlessly.

Web Portal  Database

Summary:

 The web portal mainly accesses the database in order to load and save files based on a user that is signed
in to the system. When a use uploads or runs an experiment on the website, the portal must save this information
to the database in order to make it available for future use. It’s important that the data is saved under the correct
usernames, and the strings that hold the information from the file are not corrupted when saved to the database.

Possible Errors:

 The possible errors that could arise from this interaction are as follows:

o Files saved under an incorrect username.
o Files duplicated/username duplicated in database.
o Files corrupted/inaccessible by the system.

Testing Plan:

 In order to test this interaction with the system, we will be able to create a testing code within python
using PyMongo. In order to test each of these possible errors and check for them, first attempt to save data using
usernames that have similarities within them. The issue with MongoDB is that many times when usernames are
similar, there is a level of specification that must be met. By attempting to intentionally “break” this system, we
can ensure that our file storage method will not save files incorrectly, and will additionally not duplicate
usernames within the system. As for testing corruption of files, this can be solved by a test that simply uploads a

10

file a given amount of times to similar or differing usernames, accesses the file from the database, and attempts
to scan the file in order to test it against the original.

Web Portal  Visualizations

Summary:

 The web portal will serve as window for the user that will present the visualizations. After a test has
completed its run, and the data is retrieved by the portal, the visualizations will have to accurately present this
data in a manageable form. The main issue that we may face in this situation is the visualizations are done in a
JavaScript library D3, while the remainder of the implementation is done within Python.

Possible Errors:

 The possible errors that could arise from this interaction are as follows:

o Syntax difference may cause an error when trying to display visualizations.
o Visualizations may not scale correctly to be displayed.

Testing Plan:

 In order to test this interaction with the system, we will first ensure that the generation of the
visualizations separate to that of the web portal is successful. From there, we will create a set of visualizations to
be loaded into the web portal and displayed to the user. Since these require a human to confirm whether the
visualizations are accurate to the created cases, we will then proceed to look over each of the generated graphs
and confirm that they correct. Additionally we will delve into the data being displayed in order to assure that
data is equal as well.

Web Portal  Web Services

Summary:

 The web portal will have to be hosted on the web services provided by NAU. The Django framework
will be hosted within the server and will run the website. This website can only be accessed by people either at
NAU or on the NAU VPN. This assures that people without the correct credentials will be barred from
accessing the website. Even with this in mind though, safety is without a doubt a number one priority, so we
should treat it was such. Additionally, the server going down or disconnecting from virtual environment could
cause lots of issues as well.

Possible Errors:

 The possible errors that could arise from this interaction are as follows:

o Users without correct verification access the site.
o Outages could cause loses in data and progress.

11

Testing Plan:

 In order to test this interaction with the system, we will have to approach both issues head on. In the
case of security, there are many ways that we can test the security of the system in our own hand. The issue arise
when the link to the website is made available for users. With more and more users on the system, the higher
risk factor grows for the environment becoming to public. In order to test how we can prevent this, can range
efforts from switching the host URL, to testing the security of the NAU VPN logins. At the end of the day
though, we will likely have to keep up to date with the managers of the server in order to assure that nothing is
suffering from abuse. In the event of an outage however, there are plenty of tests we can make to assure that we
stay afloat. A key idea is to save the data locally until the process is done, that way if the connection is lost, the
data itself is not corrupted and the experiment just has to be run an additional time.

12

USABILITY TESTING

 In our final section of testing, we will focus on the end users, and the usability of the software as a
whole. This is especially pivotal for our software solution, as the original intention for the design was to increase
the overall usability and accessibility of NAU’s BioNetFit software. The best way to then ensure that the
software is successful in its intention, it is paramount to conduct usability testing. The main goal of usability
testing is to understand how the software is used by the end users, and to collect data based on their experiences
with the software. Up to this point, a majority of the user testing for the software has been done through our
mentor, Dr. Razi. He has been incredibly helpful in giving as an outsiders view on the software, and has
suggested many changes that have ultimately steered the project in a positive direction. Now, we must take this
process further and reach out beyond Dr. Razi, in order to receive more insight into the creation and look of the
website and visualizations as a whole.

 In order to get the information we need in order to improve the website, we must first address the major
points of who will be using the website, and what the step by step plan will be in order to interview these people.
Let us first begin with the “who” of the situation. The concept of BioNetFit was to create a program that allowed
biomolecular scientists run large scale experiments on their own computers. This would eliminate a large
amount of time that would be spent within laboratories, and would also help cut costs for those who have to
conduct the experiments with real life materials. Naturally then, the first choice for people that we would like to
test our website would be biomolecular engineers who have done experiments of this caliber in a real life lab
setting. At the current moment, our best options for optimal test subjects are as follows:

1. Correspondents at Los Alamos research center in Nevada. Over the course of the production of the
software solution, researchers at Los Alamos have expressed interest in both assisting the
production and testing the online software solution. This would be the most optimal pool of testers,
as their years of experience will be incredibly beneficial to understanding how our program will
help them.

2. Professors of Biomolecular science at NAU. This would be another great pool of users to interview,

as professors have dedicated a large portion of their education to this specific topic. While they may
not have a lot of knowledge of computer science, their knowledge of molecular combinations would
be incredibly helpful in improving the software solution. Additionally, professors are likely to be
more easily accessible, as they are on campus for large periods of time.

3. Students of Biomolecular science at NAU. The benefits of interviewing this group is similar to that

of the professors, however they may not share the same experience. However, people within this
group will likely be more available for interviewing, as the amount of students within a field will
likely outweigh the professors.

4. Students of Computer Science at NAU. This group would be beneficial not for input on the

biomolecular aspect, but for input on the implementation and website design as a whole. While a CS

13

student may not know a lot about molecules, a second opinion on the design of the website would
be very helpful.

Now that we have an idea of what kinds of people we would want to test the software, we now move on

to the plan of action. How will we most effectively get the information we need? What is the most optimal way
of having them test the software? Below, we lay out our step by step plan:

1. Interview the subject about their experience in the field. Ask about what they enjoy and dislike

about conducting real life experiments.
2. Introduce the concept of the software. Explain what it is meant to do, what it is supposed to fix, and

the overall goal of the program.
3. Walk them through how the software works, ask them questions along the way to gauge the

experience.
4. After the completion of the test, give them a set of questions in order to gauge how the software is

performing at a whole, what people liked, what they didn’t, etc.

- Questions should centered on the experience, and how it differs from the real life
experience. It is important to truly understand what makes the software solution better than
the current experience that is it replacing.

- Ex: How does the experience offered by BioNetFit compare to that of conducting a real
world experiment?

- Ex: How easy is it for you to interpret the results from real experiments, compare to the
ease of interpretation from BioNetFit (both before and after the software solution).

- Ex: How do you enjoy the stylization of the BioNetWeb portal? Is it visually appealing?

5. The test should be done with as many people as possible, and from various groups that were
suggested previously. This will give us a wide range of opinions that we can use to factor into our
final design.

6. Additionally, after changes are made, we should make an effort to revisit some of the people that we
have already had test the software. This way, they can express their opinions of the changes to us, to
let us know if we are moving in the right direction.

The last phase of the testing should focus heavily on talking to experts about the software. This is where

it would be very key to have the opinion of the Los Alamos team. The software is ultimately going to be used by
professionals in the field, so it the final say should belong to them. This may turn out to be tricky due to the
amount of distance between NAU and Los Alamos, however we could make use of online services that would
allow for communication via video. In the end gather these opinions would be helpful in not only creating a
good looking product, but creating a functional and exciting piece of technology that could be used for a long
time to come.

