
Ecolocation

Software Testing Plan
Version 1.0

April 4, 2018

Client/Mentor:

Dr. Chris Doughty

Team Members:
Brenden Bernal
Chandler Hayes
Michael Hartzell

 Anthony De La Torre

Table of Contents

Introduction 2

Unit Testing 3

Integration Testing 10

Usability Testing 14

Conclusion 16

1

Introduction
The purpose of this document is to discuss the different components of our software
testing plan for our Android mobile app. The application is an educational tool for the
general public to emphasize how animals play an indispensable role in providing for the
overall health of our ecosystems. It does this by displaying location-based ecological
information in an easily understandable fashion. To provide ease of access, the app
removes the tasks of exploring different sources for information, it removes the
necessity of using MATLAB, and it removes the need for an understanding in ecology.
This allows users to explore any ecosystem on land and get information about the
mammals that live in it, and how they affect it. Additionally, it provides further knowledge
of how ecosystems have changed over thousands of years by providing the
ecosystem’s state during the Pleistocene Era. By using this app, we want users to
become more educated in the important role animals play and to become more
motivated in learning more about the environments.

To ensure a great user experience, the app will be tested in three main areas: unit
testing, integration testing, and usability testing. The unit testing section covers how we
are testing the individual parts of modules in the app. This section will primarily focus on
the methods related to calculating the nutrient movement of a specific ecosystem and
methods for retrieving the list of mammals in a specific location. The integration testing
section describes how we will test how different modules of the app communicate with
each other. This will include how the app communicates with the database, retrieves
datimages, and how different activities transfer important data amongst themselves.
The usability testing will describe how we plan to test the user experience with test
subjects using the app. By utilizing these three main testing methods, we should be able
to find and fix any problems in the app.

2

Unit Testing

The unit testing for our application is not the most extensive because many of the
methods in the app are for configuring the user interface (UI) components of the app to
display data. For every activity and fragment within the app, the onCreate or
onCreateView methods are called to set up the UI. The work done in these methods are
retrieving attributes from objects and displaying through the use of widgets. Another
component we will not be executing unit tests on are the methods related to spatial
mapping. Many of the methods for spatial mapping are using static data and uses
Google Maps’ Heat Map Utility in its most basic form. Additionally, a lot of the code that
was written for this application are meant to be used once acquire additional needed for
the database and to configure the data needed into the appropriate format for the
database.

The areas of the application that we will execute unit tests on are for sorting the list of
mammals in the given ecosystem, calculating nutrient movements, methods in the
Ecosystem class, and methods for getting coordinates from a text box. The methods
related to these components are more dynamic and have situations in which errors can
occur due to individual methods. The unit tests will be constructed using JUnit and
Mockito.

Ecosystem Unit Tests
The Ecosystem class contains the list of current mammals, the list of historic mammals
(from the Pleistocene Era), and the location the user selected. This class enables
different activities to have all the necessary animal data and location data needed to
perform necessary functions. This class is also responsible for retrieving the current and
historic animals from the database.

3

getAnimal(String scientificName, AnimalType type)
This method retrieves a specific animal from the either the current list of mammals or
the historic list of mammals depending on the value of AnimalType.

Inputs to Test Expected Outcome

Animal that is in the current animal list Returns animal from current animal list
and has the same scientific name

Animal that is in the historic animal list Returns animal from historic list and has
the same scientific name

Scientific name that does not exist in
either list

Return null object

Use animal type that does not match the
wanted animal

Return null object

getCurrentData(final LatLng coordinates)
This method retrieves all the current mammals for the specified location from the
database.

Inputs to Test Expected Outcome

Land coordinates Returns an ArrayList of animals that
currently exist in given location

Ocean coordinates Returns empty ArrayList

Non-existing coordinates (eg: (400,250)) Returns empty ArrayList

4

getHistoricData(final LatLng coordinates)
This method retrieves all the historic mammals for the specified location from the
database.

Inputs to Test Expected Outcome

Land coordinates Returns an ArrayList of animals that
existed in given location during
Pleistocene Era

Ocean coordinates Returns empty arraylist

Non-existing coordinates (eg: (-400,400)) Returns empty arraylist

loadImageFromURL(final Animal animal)
This method retrieves the image that corresponds to the given animal. It can handle
cases where there is no corresponding image by setting a predetermined image when
the image does not exist.

Inputs to Test Expected Outcome

A current animal Sets image for given animal

A historic animal Sets image for given animal

Animal that does not have a picture stored Sets generic image for given animal

loadRangeMapFromURL(final Animal animal)
This method retrieves the range map for the given animal and sets the range map to the
given animal. This method is designed only for historic animals.

Inputs to Test Expected Outcome

Historic animal Sets its range map image to the animal

Current animal Does not set a range map image to the animal

5

Nutrient Movement Unit Tests
nutrientMovementCurrent(ArrayList CurrentAnimals)
This method takes the list of current animals in the selected location and takes the mass
from each animal in the list. It then adds up all the masses and adds it to the BarChart.

Input to Test Expected Outcome

Current animal list where sum is > 0 Calculates the nutrient movement for the
current mammals in the ecosystem
should show nutrient movement greater
than 0.

Current animal list where sum = 0 Calculates the nutrient movement for the
current mammals in the ecosystem
should show nutrient movement being 0.

nutrientMovementHistoric(ArrayList HistoricAnimals, ArrayList
CurrentAnimals)
This method takes the list of historic animals in the selected location and takes the
mass from each animal in the list. It then uses nutrientMovementCurrent() to get the
current nutrient to add to the historic nutrient movement.

Input to Test Expected Outcome

Historic animals list where sum is 0,
Current animals list where sum is > 0

Historic nutrient movement will match
current nutrient movement.

Historic animals list where sum > 0,
Current animals list where sum is is 0

Historic nutrient movement will be greater
than current nutrient movement.

Historic animals list where sum is 0,
Current animals list where sum is 0

Historic nutrient movement will match
current nutrient movement.

Historic animals list where sum is > 0
Current animals list where sum is > 0,

Historic nutrient movement will be greater
than current nutrient movement.

6

What-If Scenario Unit Tests
whatIf(slider position 0, slider position 1)
What if uses a range slider listener to take inputs from the user for the range of weights to take
in.

Input to Test Expected Outcome

Slider positions (0,100) Nutrient distribution for all mammals from 0kg
to 100kg

Slider positions (50, 100) Nutrient distribution for all mammals from
50kg to 100kg

Slider positions start with (50-100) and
change to Slider position of (0, 100)

Nutrient distribution for all mammals from 0kg
to 100kg

Slider positions start with (0-50) and change
to Slider position of (0, 100)

Nutrient distribution for all mammals from 0kg
to 100kg

Slider positions (0, 50) Nutrient distribution for all mammals from 0kg
to 50kg

Slider positions (25, 50) Nutrient distribution for all mammals from
25kg to 50kg

Location Unit Tests
The Location activity is responsible for letting the user choose the location of the
ecosystem they want to explore. It gives the user different ways of selecting a location:
user’s location (if permission is granted), the default location, a custom location. To
enter a custom location, the user can either drag and drop the map marker or enter the
coordinates for a custom location.

getDeviceLocation()
This tries to get the most recent location the phone’s device has stored. It only gets the
most recent location if permission to access the user’s location is granted and the
device has a recent location stored. The permission granted is stored in class variable
called isPermissionGranted. This method also uses the class variable called
chosenLocation which stores the currently selected location. Once the most recent
location has been retrieved, the results are stored in variable called locationResult.

7

Inputs to Test Expected Outcome

isPermissionGranted: True
chosenLocation: (40, 40)
locationResult: (70, 70)

Places marker at (70, 70)

isPermissionGranted: True
chosenLocation: (40, 40)
locationResult: null

Places marker at (40, 40)

isPermissionGranted: False
chosenLocation: (40, 40)
locationResult: null

Places marker at (40, 40)

updateTextViews()
Gets the values from the Latitude text box and the Longitude text box to get the inputted
coordinates. Testing this method will require running tests that solely test the inputs for
latitude and then solely test the inputs for longitude. By testing this way, we can ensure
that inputs for latitude and longitude can work independently of each other.

This table represents inputs to test for latitude.

Inputs to Test for Latitude Expected Outcome

“90” Chosen location’s latitude will be (90, 0)

“-90” Chosen location’s latitude will be (-90, 0)

“91” Does not change chosen location and displays
wrong input dialog

“-91” Does not change chosen location and displays
wrong input dialog

“word” Does not change chosen location and displays
wrong input dialog

“(0” Chosen location’s latitude will be (0, 0)

null Does not change chosen location and displays
wrong input dialog

8

This table represents inputs to test for longitude and the latitude is 0°.

Inputs to Test Expected Outcome

“180” Chosen location’s latitude will be (0, 180)

“-180” Chosen location’s latitude will be (0, -180)

“181” Does not change chosen location and displays
wrong input dialog

“-181” Does not change chosen location and displays
wrong input dialog

“0)” Chosen location’s latitude will be (0, 0)

“word” Does not change chosen location and displays
wrong input dialog

null Does not change chosen location and displays
wrong input dialog

Sorting Unit Tests
There is one main method for sorting the data in our application. In order to test the
efficacy of our sorting algorithms JUnit tests were created. These tests tested the
methods with different potential inputs to check that our algorithms worked with any
possible combination of data.

sort(ArrayList<Animal> list, SORT_TYPE sortType, int order)
This method can sort Animal objects by strings or numbers in ascending or descending
order. Specifically, it sorts an ArrayList that contains Animal objects by its common
name, scientific name, mass, or threat level. The threat level is represented as an
enumeration where each enumeration holds an integer value; this enables sorting by
numbers. Each test case will use the same instance of an ArrayList<Animal>, inputs
that indicates which Animal attribute is being sorted and in what order (ascending or
descending).

9

Case to Test Expected Outcome

Common name, ascending The list of animals is in alphabetical order by common
name

Common name, descending The list of animals is in reverse alphabetical order by
common name

Scientific name, ascending The list of animals is in alphabetical order by scientific
name

Scientific name, descending The list of animals is in reverse alphabetical order by
scientific name

Mass, ascending The list of animals is in ascending order by mass

Mass, descending The list of animals is in descending order by mass

Threat level, ascending The list of animals is sorted by least threatened to
extinct

Threat level, descending The list of animals is sorted by extinct to least
threatened

Integration Testing
The following Integration tests will be performed on our application to ensure that all of
our modules work together to share data accurately. The three main modules that we
are testing in this section are the app itself, the database, and the private website that
stores the animal and range map images. We are testing the flow of data between the
database and the application, the flow of data between the photo URL and the
application, and the flow of data within the app itself.

Database-App Integration Tests
For testing the flow of data between the application and the database we have two parts
to test; how the app works with the PHP script and how the PHP script works with the
database. For both of these tests we will be adding lines into the actual code to ensure
the integrity of the data sent and received while the application is running. These are
both simple and straightforward tests but they will validate that the data is flowing
throughout the app successfully. By ensuring the integrity of the database integration

10

we can be confident that the results and the data presented in the application are
accurate.

App and PHP Script

There are two tests for this integration. The first test is how the app shares data with the
PHP script. The test here will be to make sure that the coordinate data is being sent
from the app to the PHP script correctly. Our tests will utilize print statements on the
PHP side to output the data that is received and we will be able to manually inspect the
results to see if the the tests pass.

The second test is validating the return from the PHP script to the app. The app should
receive a list of animals at the users input along with all the information on that animal.
This test will consist of outputting this list and comparing the results against an SQL
script. The SQL script will be run manually by inputting the coordinates and then the
results will be compared to the list returned from the PHP script.

PHP Script and Database

There will be a single test for the integration of the PHP script and the database. This
tests will simply compare the list returned to the PHP script against an SQL query with
the same input. By manually comparing the two lists we can check to see if the proper
data is being returned and that the PHP script is correctly interacting with the database.

Images-App Integration Tests
One of the most important element of the animal list is the image for each animal. In
order to ensure the animals we have images for appear, we are running two tests. The
first focuses on testing to make sure the URL for an animal actually returns an image.
This will be done by manually entering the URL into a web browser. The second test
focuses on making sure a validated image URL appears on the app using Picasso.

Picture URL to Image
In order to check the validity of our URLs, we will test a base set of animals from the
database to retrieve the images for. Our plan is to take 10 animals from the current
database and 10 animals from the historic database. The URL to retrieve the image for
each animal will be tested, as well as the range map image for the historic animals.
Several invalid URLs will also be used, to make sure no unexpected results occur.

11

To perform the test, the URLs will be manually entered into a web browser. For a valid
URL, the image of the animal will appear. If it is invalid, the webpage should return an
error. This will ensure that the URLs are retrieving the correct image.

Picasso to App
To check that Picasso is retrieving the correct images, the validated URLs from the
previous test will be used, along with several invalid URLs, and several images not from
our website. This will give us a better understanding of what the potential problems are
and where they are located.

To test each animal, we will begin by determining one location that animal lives in. We
will run the app for that location, and ensure that the correct image appears next to the
given animal. Then the animal will be clicked on to move to the detailed information
page, to check if there are problems displaying the image on that page. Historic animals
will also have their range maps tested at this point. To test the other URLs we will
replace the standard URL, with the test URL and do the same tests. Invalid URLs
should display a generic image. By covering all of these situations, we should be able to
find any potential problems with the images.

App-to-App Integration Tests
In order for the app to behave properly, many of the activities need access to the lists of
current and historic animals for chosen location. The Ecosystem class was created to
store all the information on the lists of animals for the chosen location and to store the
coordinates of the chosen location. The following integration tests will verify that the
different activities that needs this information can successfully communicate with the
single instance of the Ecosystem class to get the needed information.

Animal Data to Activities
To test the reliability of retrieving data from the Ecosystem object, the list of current and
historic animals will be retrieved from each activity that needs access to this data. This
means that there will be three similar tests to run, which will be run consecutively. The
first test will be for the ListView activity, the second test will be for the Detail Activity,
and the final test will be for the GraphResults Activity. These tests will verify that the
retrieval of the animal data is accurate and consistent. The tests will start by initializing
the current and historic animal lists with at least 10 animals. Each test will require

12

retrieving and printing the lists retrieved. The test is successful if all of the lists from
each of the three activities are identical. These tests will be re-run, when the chosen
location changes to ensure that the list of animals updated appropriately.

Results to MPAndroidChart
To test the reliability of sending results to the BarChart, that is made using
MPAndroidChart, we will be sending the relevant data to the BarChart. The relevant
data would be the current animal nutrient movement, the historic animal movement, and
the what-if scenario. The current and historic nutrient movement are only calculated
once after the location is chosen. This means for both tests, they will be sending data of
various values and sizes to the BarChart to ensure that the data is successfully passed
and is displayed properly. The what-if scenario is more complicated because the user
will be able to change this data multiple times so it will be more important to test. The
test for the what-if scenario will be to test as many scenarios the user can use in the
what-if scenario. This ensures that the data is sent to the BarChart properly and that the
data is displayed properly.

Google Maps API Integration with the App
In order to test the Google Maps API with the app, the test will require using a mock
location. This will enable testing the part of the app that obtains the user’s location. The
test will include obtaining the location from several different mock locations and
selecting a location if the user denies the app getting the user’s location. Testing with
mock locations ensures that the app is consistent and accurate when getting the user’s
location.

There will be a second test for the Google MAps API by confirming that different
locations are successfully passed to the GraphResults activity. This integration test for
getting the chosen location will be simpler because it requires testing the retrieval of the
chosen location in a single activity. This will require to two cases to test; the first will test
the getting the correct chosen location and the second will test getting the correct
chosen location when a new location is selected. These two tests ensures that the
retrieved location is up to date on each call.

13

Usability Testing
Usability testing will be used to ensure that our application is easy to use and
understand. We will be conducting test with a small group of individuals with an
assortment of backgrounds. Our participants will be given a set of tasks to accomplish
and we will watch as they set out to perform these tasks. While they are doing the tasks,
we will be able to get feedback on how long it takes to perform the tasks and where or
what causes them confusion. The participants will give us feedback at the end of the
tests to let us know what they liked and disliked about the application. We will ask for
feedback on the user interface and user experience. We will also ask for thoughts on
the clarity, flow, and final thoughts on the application. The results of this testing will
allow us to make changes to the application to clarify parts that may be confusing or to
fix bugs not caught in the unit tests. The tasks are as follows:

1. View list of animals at your current location
2. Sort the current animals by descending mass
3. Read description of largest mammal
4. View wikipedia page of largest mammal
5. See list of historic animals at current location
6. View bar chart
7. Remove all animals greater than 15kg from ecosystem
8. Reset values
9. View current spatial map
10.View historic spatial map
11.Go back to map and choose a location in Africa
12.View current animals in specified location

This list of tasks will take the user through every aspect of the application. The layout of
the tasks follows a basic use case and flow of the application that we expect to be the
most common. By watching a set of users perform these tasks we can get a good idea
of how the flow of the application works to people not intimately familiar with its format
and will allow us to see what works well and what can be improved.

There will be a minimum of five participants. One of the participants will be a computer
science student working on another capstone project. The purpose of this is that this
student will be able to give us critical feedback on the app design and useful information
on the technical aspects. Another participant will be a biology student who has taken
ecology courses. This provide feedback on the ecological side of the application and to

14

get thoughts on how are results are being displayed and described. Other participants
will have no speciality regarding the focus on the application. Feedback from these
participants will give insight to how the application is perceived to our general audience.
The important aspect of this group of participants is to make sure the layout of the
application is user friendly and to ensure that the data is easy to understand and follow.

15

Conclusion
Performing tests and getting feedback from users is an important process in getting the
application to its final stages before release. The three methods of testing allows us to
take a closer look at the app to refine and fix minor problems. The unit testing is useful
for going through all of the use cases and write specific tests on the methods that made
these cases work. Through these tests our app will be tested with every possible input
and scenario to ensure that the final product will be able to function and handle any use
case. The integration testing is useful for checking that the modules worked together
and pass data accurately. Testing to make sure the database works seamlessly with the
app is a critical requirement in being confident in the robustness of the product.

Getting user feedback will be beneficial in getting unbiased and unique insight into how
the application looks and feels to users of different backgrounds and knowledge. This
will help us tweak the app and the user interface to provide the best possible user
experience. The ability for our application to function seamlessly without any
unexpected crashes or bugs is essential to rolling out the final product.

16

