TEAM SKYWARD

—Frost Monitor Project ——

Software Test Plan

Version 1.0

3/23/2017

Team Name:

Skyward

Team Members:
Gage Cottrell

Justin Kincaid
Chris French
Alexander Sears

Sponsors:
Dr. Michael Mommert and Dr. David Trilling

Mentor:
Dr. Otte

Table of Contents

Introduction

Unit Testing
Integration Testing
Usability Testing
Conclusion

References

10
18
19

https://docs.google.com/document/d/1ZKhWaJ-e5MBKo7jnO0fOsZ8KO2AdrA6W9QRG4osxTgQ/edit#heading=h.in8hj9otr2iv

Introduction

Project Background & Motivation

We are developing an online dashboard which displays vital information and metrics for the
Flagstaff Robotic Survey Telescope (FRoST). The purpose of FRoST is to carry out follow up
research on near-earth objects (NEOs) so that researchers can better analyse and track NEOs.
With more than 15,000 already discovered NEOs, there is a great need for research to be done
on the already discovered objects - most importantly so that we might be able to predict
impacts with these objects and Earth.

Our online dashboard, known as the Frost Monitor System, displays various information
about FRoST and weather local to the telescope. Using our the Frost Monitor System,
researchers and operators of FRoST will be able to quickly see information that would
previously require many steps to reach. Therefore, the main motivation for developing the
Frost Monitor System is that it will be able to save researchers time when looking for the
information that FRoST works with.

General Software Testing Overview

As with all software being developed, there comes a time when the developers must be sure
that the software behaves as it should and that the software meets the requirements that were
initially designed before development began. Validating and verifying software is done in
many ways, and this process is more generally known as “software testing”. Software testing
can be done automatically using testing software, or manually by preparing tests of the system
and verifying the results of the tests. Many times software testing is carried out by using
various automated tests as well as manually creating tests specific to the software being tested.
Both automated and manually tests aim to find errors, faults, and failures within the software
being tested.

Testing Plan Overview

The Frost Monitor System has been in the development stage for about 90 days, and the
system’s requirements are nearly all implemented and designed. The next stage of
development for the Frost Monitor System is to carry out software testing. Our plans for

software testing involve unit testing, module integration testing, as well as usability testing.

We decided to use unit tests to validate the functionality of our software. Due to our
application being developed with Django - a python web development framework - we will be
able to easily carry out unit tests since python features an already created ‘unittests’ testing
package. Because the Frost Monitor System is comprised of two separate applications, we will
be carrying out unit tests within both of these applications separately. Using unit tests, we will
be able to verify that individual units of our software are working as per requirements and are

error free. Further detail will be given in the following “Unit Tests” section of this document.

Given that the Frost Monitor System is comprised of various modules, validating these
various modules work together as they should will be carried out via integration testing. We
felt that integration testing was necessary due to the fact that if one module in our system fails,
our system may not behave as it was intended. More detail regarding our integration tests can

be found later within this document.

The Frost Monitor System is a web-based application that users directly interact with and
view when using. Because our application aims to save the user's time, we must carry out
usability tests. Usability testing will allow us to make sure that our software is as user-friendly
and simple as possible, while still being highly effective. Usability testing involves having
actual users test the software by interacting with the system as a whole. By carefully analysing
how users interact with our system, we can then make changes to improve upon the system
and its functionalities. More details regarding our usability tests can be found within our

“usability testing” section further down in the document.

The following section of this document will describe in detail our unit tests for the Frost

Monitor System and its applications.

Unit Testing

Testing Approach

We have divided the unit testing into two main sections. The sections are logically divided
between the Frost Monitor front end application and the JackFrost back end application - the
two applications that comprise the Frost Monitor System. This ensures that each application
will be tested according to its own functionality. This will also allow for quick identification of

problem areas and will afford for each application to be tested individually without affecting

the other.

Each application will be divided into modules of similar functionality. Each module will have
test to evaluate its general functionality for all submodules. Each submodule will then have test

to evaluate unique critical elements within the submodule.

The unit test will be organized as follows:

1. Frost Monitor - front end
1.1. Views
1.1.1. Admin
1.2. Templates

1.3. Urls
2. JackFrost - back end
2.1. Views

2.1.1. View sets
2.2. Models

2.2.1. Data Models

2.2.2. Serializers
2.3. Urls

2.3.1. jackfrost/

This top down approach to unit testing the entirety of both applications will provide adequate
test coverage while reducing redundancy. Many of the methods and classes within the
submodules perform similar task with similar data. Unit test with a low test coverage that still
test the entire set of implemented data types,objects, and classes will produce the same results

as having tests for each individual method within the submodules.

Both the Frost Monitor (front end) application and JackFrost (back end) application are built
upon Django, an open source framework that is actively maintained and heavily tested. A
majority of the functionality of both applications are implemented using the built-in objects of
the framework. Testing that we instantiated the built-in objects within our application
correctly is important, while testing that the built-in objects themselves are implemented
error free is unnecessary within the context of this project. This is a guiding principle we used
in establishing our unit test cases.

We will be using Django’s built in test suite which is built on top of ‘unittest’ module in the
Python standard library. Django’s test-execution framework will provide all the necessary
utilities to perform unit test for both the front end and back end application. With Django’s
test framework we can easily perform, simulate and automate complex web application
interaction as well as integrate other web based testing software such as Selenium into the test
suite. To determine our code coverage we will be using Coverage.py - a testing tool that also
integrates within Django’s test suite. Coverage.py allows us to visualize where, what and how
much code our predetermined test are actually covering. This will help us decide if we need to

implement, modify or change test based on the statistics provided by Coverage.py.

Testing Plan

1. FROST MONITOR

1.1 Views.py
The views are responsible for handling HTTP Post and returning the HTML with
the rendered request.

e All views can:
o Return rendered HTML
o Receive HTTP POST
e Test will:
o Assert correctly rendered returns
o Assert correctly received HTTP POST

The table below shows sample test inputs with their respective outputs when unit testing
Views.py within the Frost Monitor System.

Test Inputs Test Outputs
Malformed HTTP POST Error
Correct HTTP POST True

No HTTP POST None

Method call with request HTTP Status code 200 & HTML doc with
correct title

Method call with no request HTTP Status code 200 & HTML doc with
correct title

1.1.1 admin view
The admin view handles the authentication page for admin and super
users for the Frost Monitor Application.

e The admin view can:
o Authenticate users
o Reroute users based on authentication
e Admin view test will:
o Assert only Authenticated user can login
o Assert correct reroute of URL

The table below shows the test inputs with their respective outputs when unit testing
Admin.py within the Frost Monitor System.

Test Inputs Test Outputs

Super User Username & Password True & 302 & correct URL redirect
Super User Username only False & 302 & correct URL redirect
Super User Password only False & 302 & correct URL redirect
Unregistered Username & Password False & 302 & correct URL redirect
Unregistered Username only False & 302 & correct URL redirect
Unregistered Password only False & 302 & correct URL redirect

1.2 Templates
The templates are the static HTML pages that can include django tags that are
dynamically loaded by the views.py

e All templates:
o Have valid and well-formatted HTML
o Have valid external and internal links
o Test will:
o Assert correctly formated HTML

o Assert there are no broken links

The table below shows test inputs with their respective outputs when unit testing
template files within the Frost Monitor System.

Test Inputs Test Outputs
Load page from ‘client’ True

Search for broken links False
1.3 Urls.py

The urls.py is responsible for routing the URLSs to the correct views
corresponding to those uri.

e AllURLs can:
o Return the corresponding view

o Test will:
o Assert received HTTP Response
o Assert the correct view is returned

The table below shows sample test inputs with their respective outputs when unit testing
Urls.py within the Frost Monitor System.

Test Inputs Test Outputs

Malformed HTTP GET HTTP Status code 418

Correct HTTP GET HTTP Status code 200 & HTML doc with
correct title

2. Jack Frost
2.1 Views.py

The views are responsible for handling HTTP Post and returning the HTML with
the rendered request.

e Referto1.1

2.1.1 ViewSet

ViewSet is a view that is used in the django-rest framework used to
display sets of data models in JSON format in an HTML document and is

also responsible for initializing the database query for GET request and
the Model serializer for POST request.

All viewsets can :
m Return data from a HTTP GET request
m Receive data from a HTTP POST request
Test will:
m Assert correctly returned HTTP GET request
m Assert correctly received HTTP POST request
Note:
m Each viewset can have methods that are unique to their response
requirements, as individual response methods are implemented
their corresponding test will follow these same guidelines

The table below shows sample test inputs with their respective outputs when unit
testing Views.py within the Frost Monitor System (Specifically, JackFrost).

Test Inputs Test Outputs
Malformed HTTP POST HTTP Status code 400
Correct HTTP POST HTTP status code 200
Malformed HTTP GET HTTP Status code 400
Correct HTTP GET HTTP Status code 200
ANY restricted HTTP request HTTP Status code 405
2.2 Models.py

The models are python classes that represent the data used in the Frost Monitor
System. These data models can be divided into the following two categories.

2.2.1 Data Models

o

The Data Models are python classes that represent the data that is
gathered from the FRoST. The Model class is a built-in object from
Django framework. We will ignore all of the class methods that are not
overrode in the child class and focus on correct parameterization while
instantiating class variables.

All models.py can :
m Instantiate Class variables that are data fields
m Access Class variables

o Test will:
m Assert correctly instantiated class variables
m Assert correctly assigned class variables
o Note:
m Each class variable can have a unique data type field. The test for
the different types of fields can follow these guidelines.

The table below shows sample test inputs with their respective outputs when unit testing
Models.py within the Frost Monitor System.

Test Inputs Test Outputs
Malformed models.*Field() parameters Error
Correct models.*Field() parameters True

Out of bounds models.*Field() parameters | Error

Correct data type class variable Assigned value
assignment

Incorrect data type class variable TypeError
assignment

2.2.2 Serializers.py
The Serializers define JackFrost API representation of the models. The
serializers is a built in class of the Django-rest framework. The serializer
is used to abstract the conversion of python data types into JSON or XML
responses and vise versa for request. In our use case we need to ensure
that the fields of our implemented serializers match to the implemented
models.

o All serializers.py can :
m Access their base model
m Access the fields
m Validate the fields with the fields of the base model
o Test will:
m Assert the validation of the base model fields with the serializer
fields

The table below shows sample test inputs with their respective outputs when unit testing
Serializers.py within the Frost Monitor System.

Test Inputs Test Outputs

Validate instantiated serializer Validated Values

2.3 Urls.py

The urls.py is responsible for routing the URLSs to the correct views
corresponding to those uri.

e Referto 1.3

2.3.1 jackfrost/

Jjackfrost/ is the entry point in the Frost Monitor domain for the JackFrost
REST API. All URI’s that follow jackfrost/ should be directed to their
corresponding view.
e Note:
o As models and data changes so will the entry points for API views.
As individual REST API response methods are implemented, their
corresponding test will follow these same guidelines

The table below shows sample test inputs with their respective outputs when unit testing
Urls.py within the Frost Monitor System (Specifically, JackFrost API).

Test Inputs Test Outputs

Malformed HTTP POST HTTP Status code 400

Correct HTTP POST HTTP status code 200 & correctly
formatted response JSON/HTML

Malformed HTTP GET HTTP Status code 400

Correct HTTP GET HTTP Status code 200 & correctly

formatted response JSON/HTML

ANY restricted HTTP request HTTP Status code 405

The results of these test will be studied along with the analysis of our code coverage. More
unit test will be developed and successfully completed until we are satisfied with the results.

We will then move onto integration testing with the confidence of the stability of our core
functionality.

Integration Testing

General Explanation

Our system consists of three main modules: The Nuthatch Data Collection script, the
JackFrost REST API, and the Frost Monitor web dashboard application. Each of these
represents a stage in the path that data takes on its journey to being displayed within the Frost
Monitor web dashboard. It is important to make sure that each module plays its part correctly
by communicating in the correct fashion with the other modules. This means that the
messages they pass between each other need to be formatted correctly, and no important
pieces of messages are left out. Error messages must be sent and handled gracefully so that the

system is resilient to complete system failure.

Our first module in our flow of data is the Nuthatch script. This is a python script that will
reach out to the nearby Lowell Observatory’s weather station in order to grab weather data,
and for everything else, will communicate with the FRoST Robotic Telescope. It interprets

and packages the data it receives into a format that is accepted by the JackFrost REST API.

When the JackFrost application receives data from the Nuthatch script, it stores the data into
the Frost Monitor System’s database according to the predefined models. The validity of the
data is checked automatically, as Django provides mechanisms for verifying input into the
database. For example, if the JackFrost application attempted to post model data that was

malformed, Django would automatically detect this and disallow the post from continuing.

The Frost Monitor application (front end) is the what the users are supposed to see; the web
dashboard containing all the charts, tables, and images. This is the main interface to the
system, providing a graphical way of viewing the information stored in the database. The
application sends requests to JackFrost in order to populate the web page, thus putting the
carefully gathered data to use. Both the Frost Monitor and JackFrost applications are
responsible for sending valid messages to each other in order to communicate and give each

other information.
Testing the Interfaces

Nuthatch and JackFrost

Nuthatch will send data to JackFrost according to the models we have implemented. Django

will automatically check the sent data against these models, and if there are any extra fields, or

missing fields, or incorrectly formatted fields, it will return with an error. Incorrectly

formatted fields could be a number where a string is expected.

The tables below specify the fields required for each model.

Weather
Temperature | Dewpoint | Humidity Wind Speed Wind Direction
Number Number Number Number Number
Telescope Status
Pointing Position Dome Position Local Time Last Command
Number Number Date Time String
Telescope Log
Log Type Log Content
Number Number
All Sky Image
Image Link Image Name Date Taken
Number Number Number
Target Information
Target Name | ra_deg ra_dec Scheduled Start Scheduled By
String Number Number Date Time String

For each of these models, if the JackFrost application does not receive all fields specified, it will
return an error and not add any data to the database, which will protect the validity of the

stored data.
JackFrost and Frost Monitor Applications

For data sent between the JackFrost and the Frost Monitor applications, the model schemes as
defined above are also applied for this interface. The data must be formatted the same way, and
with the same required fields. The same errors will be sent back, and all behaviors of JackFrost
are the same, such as not accepting incomplete data. This lets the two interfaces be consistent

with each other, and so we will not have to manage two different kinds of data formats.

Given that we can now have confidence in how effectively our modules communicate with
one another, we can move onto testing how well the system and the users interact during

usability testing.

Usability Testing

General Explanation

Our project is essentially a single web page with various modules that will showcase weather
and telescope data. The look and layout for these modules must meet certain standards and
criteria set by our client. The page must load in a reasonable amount of time, must be in the
designated layout, and must be able to communicate information quickly and effectively. Not
only is this important to meet the client's standards, but will be important for accommodating

any additional system users in the future.

Another important facet of user testing will include security. We obviously don’t want
unauthorized access, but it would be really nice if the intended users were able to successfully

log into the website to use features that are not available to anyone else.

For the most part this testing phase will be walking the client through all of the functionality
that the website and getting feedback on any changes that must be made. The client will use the
website and review it for usability, information accuracy, and navigation. Necessary changes

may be made before the client may test further.

The time frame for user testing will begin as soon as testable features are added to the website
once deployed, and will continue until the project deadline has lapsed. The test subjects for the
user tests will include our client and any additional users from their team. This will include

anyone that will continue to use the completed website long term.

Any and all problems found will be documented and communicated to our team, either via
email, or during weekly meetings. We will create a detailed list of any issues that arise so that
we can easily look back on them. Our team will then make the necessary updates, and inform
the client on the changes so that testing may continue further. Essentially, our usability testing
will be conducted in an iterative fashion where we will: test, gather results, implement

changes, then repeat the previous steps until completion.

Usability Testing Plan

1. FrontPage Testing
a. Module Layout
b. Module Information and Accuracy
c. EaseofUse

2. Security Features Testing

a. Password
b. Emergency Shutdown Button
c. Target List Editor

Front Page Testing
Module Layout

The layout of modules on the web page will soon reflect the design that was given to us by the
client. It is possible that after the client sees the finished product, that he may wish to make
updates to the overall design. This will be tested as needed and may be ongoing until the
project is complete. Any suggestions for an updated layout may be corrected and pushed back

to the client for review.

Additionally the user will be testing the layout of the modules across a breadth of various
devices in order to see if the modules are sized correctly and appear in the correct order on
different sized displays such as a tablet or a cell phone display. Modules may appear in any size
of our choosing, but must be scalable to appear correctly on any size display, and when the
modules are all stacked one on top of the other on a smaller display, they must appear in the
correct order. As the client tests the front page across various screen sizes, they will make note

of aspects of the modules that may not be to their liking and we can make changes accordingly.

Module Information

Various modules on the front page will display information such as temperature, wind speed,
and dew point. Depending on the amount of data that is pulled in to populate the graphs, they
may become easily cluttered, or may not have enough data at all. Perhaps headings or labels

may be missing.

Each of the modules on the front page are very customizable. Our client will be reviewing
these modules individually to test for errors in displayed information or to simply update the
displayed format. For example, the client may not be able to actually see the data on the
temperature graph because the information is too condensed, or perhaps the layout is correct,
but the graph is too small. After testing, we would have to make the necessary changes before

allowing the client to test again.

Ease of Use

This is just a general mark of quality for the page itself. We will have the client click around
and interact with modules on the front page to see is the overall page is easy for the client to
use. Minor tweaks to the page can be made to keep the design satisfactory for the client. The
client in this case just has to use the site for a bit to see if any general settings or changes should

be made to suit their needs.

Security Testing

Password Testing
Obviously the password given to the client must work and allow the user to get behind the wall
of security to access features. We will have the client test out the password until they are

satisfied that it works and ensure that everything functions as intended.

Atthis point the password may be changed to whatever the client would like, and they can test

it to make sure it works.

Emergency Shutdown Button

After the client has accessed the button, they will be able to test out the button to see if the
satisfactory functionality is present. The implementation of the button functionality will be
completed by the client at a later date, which means the button will simply be an endpoint to
transfer information of the clients choosing later, but it must be accessible and function as the

client expects.

We will have the client test out the button and ensure that the endpoint produces the desired

output, if any output is desired.

Target List Editor

This user test will be more in depth than the others. Rather than just visually inspecting
elements, the client will have to interact with the target list editor and ensure that the proper
output is provided once editing the list is complete. The actual target list is on the front page,
and the editor is behind security on a separate page. This means that the client will have to
make changes on one page, then inspect the output of the changes on another page and check

for accuracy in the changes made to the information.

The target list editor will also be an endpoint to transfer the changes the any necessary
locations off site. We will not be implementing the transfer of information off site. That will
be left for the client. This means that the target list endpoint must produce the output needed

by the client to make the necessary implementation later.

Testing will continue and be checked for accuracy for the remainder of the project. Aslong as
any discrepancies in information exist, we will be prepared to fix them as long as testing

continues.

Conclusion

NEOQO research is a multi-million dollar research area that could potentially predict potential
impacts with NEOs and Earth. The Frost Monitor System we have developed aims to help
NEO researchers quickly view important information being transmitted and used by the
Flagstaff Robotic Survey Telescope.

The Frost Monitor System development has reached a point where we now need to carry out
software testing to validate functionality and make sure our software is free of errors, faults,
and failures. To carry out our software testing, we plan on carrying out unit testing,
integration testing, and usability testing. We believe that our plan discussed above will be able

to prove whether or not our software is ready for operation within a production environment.

