TEAM SKYWARD

Frost Monitor Project ——

Software Design Document

Version 1.1

2/14/2017

Team Name:

Skyward

Team Members:

Gage Cottrell
Justin Kincaid
Chris French

Alexander Sears

Sponsors:
Dr. Michael Mommert and Dr. David Trilling

Mentor:
Dr. Otte

Table of Contents

Introduction

Implementation Overview
Architectural Overview

Module and Interface Description
Implementation Plan

Conclusion

References

10
15
18
19

https://docs.google.com/document/d/1ZKhWaJ-e5MBKo7jnO0fOsZ8KO2AdrA6W9QRG4osxTgQ/edit#heading=h.in8hj9otr2iv

Introduction

Document Purpose

The purpose of this document is to outline the technical aspects of the FRoST Monitor System
and the technologies used to develop and implement the application. The goal of this
document is to give the reader a better understanding of how the application is being
developed and implemented through examples of requirements, constraints, and system
architecture.

FRoST Monitor Project
We are Team Skyward and we are building an online dashboard for the FRoST Monitor. The

FRoST monitor is a telescope dome that is a few miles south of the Northern Arizona campus.
The FRoST monitor dashboard will display vital telescope and weather information quickly
and easily. Weather information gathered from the FRoST monitor and displayed on the
dashboard will include data such as current temperature, dew point temperature, wind, and
the latest image from the all-sky-cam. All of this data is supplementary to help our clients use
the FRoST monitor telescope to photograph and study Near Earth Objects.

Near Earth Objects (NEOs)

Everyday about one hundred tons of particles originating from outside of Earth’s atmosphere
makes contact with Earth’s surface. While the vast majority of the particles contacting Earth
are very small, instances of larger objects impacting the surface have been recorded. Roughly
every 10,000 years, a rocky or iron asteroid larger than 100 meters impacts the earth and
causes localized destruction. On an average of every few 100,000 years, asteroids larger than 1
kilometer impact the earth and cause global disasters that can severely impact life on Earth.
Due to the risk of having Earth impacted by objects that have the potential to cause massive

destruction, it is vital that near earth objects be discovered, tracked, and analyzed.

Researching Near Earth Objects (NEOs) is an ongoing joint effort between many countries
and governments. Using telescopes, it is possible to discover and track NEOs as they move
throughout the solar system. Making publically available the information gained from NEO
discoveries, allows for a collaborative environment in which NEOs can be discovered, tracked,
and analyzed very quickly. To date, there have been more than 15,000 different NEOs
discovered. As telescope technology advances, so do the amount of NEOs discovered. Figure 1

below depicts the discovery rate of near-earth-asteroids from 1980 to present date.

The following chart shows the cumulative number of known Near-Earth Asteroids (NEAs) versus time. Totals are shown
for NEAs of all sizes, those NEAs larger than ~140m in size, and those larger than ~1km in size.

Near-Earth Asteroids Discovered =
Most recent discovery: 2016-Nov-10
17 500 r 17 500

I Al

15 000 | 140m+ 15 000
ki M 1km+
g
5
2 12500 I 12 500
“
o
& 10000 - — 10 000
2
E
E
Z 7500 — 7 500
H
2 5000 L s 000
E
S
G

2500 b 2 500

0 T ¥ Lo
1980 1990 2000 2010

Discovery Date

Figure 1: Near-Earth Asteroids Discovered

Nuthatch Server

“Nuthatch”is a server built and maintained by our clients. Our team will not be responsible in

any way for the development or maintenance of the Nuthatch server. This server will gather

and host weather and telescope information. Our team will then take this information and use

it to populate all of the required data to display on our web application.

Project Requirements

The first requirement is a web application that will host display all of the weather and status

information that is gathered from the telescope. The second is including a password protected

user account for functionality and information that will be hosted behind a layer of security.

All other requirements involve communication between the FRoST monitor web application

and our clients server Nuthatch in order to get all of the necessary data to display on the web

application.

Brief project requirements list includes:
e Web Application

o

o

o

o

Access to our clients Nuthatch server
Database to store mirror of data hosted on Nuthatch server
Ability to update data to web application in real time

Maintain alist of issued commands to the telescope

e Single Password Protected User

o

Dome shutdown button

Implementation Overview

The FRoST Monitor system will be built to give researchers and users of FRoST the ease of
being able to quickly and efficiently check on the live status of the telescope and surrounding
weather conditions. The FRoST Monitor System will be built using the Django web
development framework - and will be using the Django REST Framework as a means to
receive current data. The entire FRoST Monitor System will be created within a virtual
environment using Anaconda, to ensure that our application can easily be modified without

worrying about other outside factors.

Using Anaconda, we will install a virtual environment on our clients server so that we may
make any changes we need in order for Django to run the way we want it, just so these changes
aren’t made for the whole machine. We aren’t the only ones using it since it belongs to the
whole NAU physics department, so it’s best for us to use a virtual environment in order to
keep our footprint on the system to a minimum. The machine will have to be configured to
direct certain traffic to this environment in order to provide access to the FRoST Monitor
system.

The Django REST Framework will be used to communicate with the client’s own data
processing machine. That machine will have a script that sends data to the web server which,

since the data will be available locally, will make it quick and easy to display data on the web

page.

The Django web development framework utilizes a Model View Controller (MVC)
architecture that is essentially a 3-tier architecture. This document will later discuss in detail

this architecture and its strengths and weaknesses.

The webpage that is produced with the Django framework will update the information being
displayed automatically every 60 seconds using asynchronous JavaScript (AJAX) calls.
Implementing AJAX into our Django application allows the application to automatically
update the data being displayed, which is extremely convenient for users who need to view the
latest data available.

The following section of this document will discuss in detail the architecture behind the
FRoST Monitor System.

Architectural Overview

Application overview

Users Interfaces Use Cases Data Technology Enablers
Web Page l
s Weather Monitor Weather Information Web Server
™| Telescope Status Telescope Metrics Message Handling
View N.E.O. Target List | > Telescope Science Data | [+ Data Collection
Shutdown Telescope User Data Event Listener

Web Service

Other

Figure 1: Application Overview and Diagram

User and delivery

The view in Figure 1 allows for different audiences to access the frost monitor through
different channels. These two channels are:
® Researches and the public users will access application over the internet using a web
browser. These are the main users of the FRoST Monitor System.
® Other users such as the web service requester will access the application through a web
service implemented in a ReSTful service. Essentially these “other users” are

applications/systems that access our application via the REST service to get/post data
such as Nuthatch.

Core application uses

Figure 1 highlights the use-cases for the Frost Monitor application. These uses are the
expectations of information to be presented to the user.
® Monitor Weather
O The user will be able to monitor current weather conditions around and
surrounding the FRoST telescope.

® Retrieve Telescope Status

O The user will be able to quickly observe the current telescope status. An
example is where the telescope is currently pointing in the sky.
e ViewN.E.Olistand information
O The user will be able to retrieve information on the current and upcoming
Near Earth Objects that are to be observed by the telescope.
® Emergency Shutdown
© Anadmin user will be able to login and send a signal to the telescope. This

signal will trigger a mechanical response to the telescope to shut the dome.

Data

The core information and data constructs required to realize the core application uses are
highlighted in Figure 1. The follow data is fundamental to the core use cases.
o Weather
O The current weather data will be the current weather conditions of
surrounding the FRoST telescope. This system will manage the propagation
of weather data from web services and local hardware.
® Telescope Metrics
o0 Telescope Metrics represent the physical status of the FRoST telescope.
Examples are the current telescope position, and dome status.
® Telescope Observation Data
O The telescope observational data represents the past and current observed data
from the FRoST telescope. Examples of the data will include alist of N.E.O
that are queued to be observed and pictures and telemetry data of past
observations.
e User
O The user data will allow for permission based action between the web
application as well as the web service. There will be a user to allow for web
service data push’s. There will also be a user for access to the emergency
shutdown.

Technology Enablers

Figure 1 highlights the key set of components to support implementation of the Frost Monitor
application.
® Web Server
0 The application will reside on a web server. The web server will be required
for providing access to the FRoST monitor application interface and the REST
api.
® Message Handling

o Will manage request over http from the event listeners. The handler will
provide the implementation of client request for information and web service
request.

e Data Collection

0 The data collection will be implemented on a gateway machine that will
propagate weather and telescope data from the telescope and other external
sources. This module will also be responsible for sending data to the web
database through the REST api.

e Event Listeners

o0 This module is the main function of the REST api. It will handle incoming
events and request made over http from clients and web service users. It will
then hand off the messages to the message handler.

The FRoST Monitor application is built predominantly upon the Django framework. The
Django framework uses a 3-tier architecture very similar to the popular Model, View,
Controller (MVC) architecture. Figure 2 can be seen below and is a diagram of the
implemented framework in respect to the web application. In Figure 2 below you can see thata
Django project can have multiple applications within itself, and that the FRoST Monitor
System is using two applications in tandem.

Web Server

Django Project

4)

FRoST Monitor JackFrost REST
Application Application

Figure 2: Web Application Layers Diagram

In Figure 2 above you see that there are two applications within the single Django Project.
These two applications work together to accomplish the goals of the FRoST Monitor System.
The FRoST Monitor Application is the application that is built upon the standard Django
framework and is modeled after an MV C architecture. The JackFrost REST Application is the

application that is built upon the Django REST Framework, and follows a REST architecture.
Keeping the standard Django application separate from the REST application allows us to
keep a separation of concerns within our Django project, and will allow for easy modification
in the future. Both of our applications live within the same Django project, and that Django

project is hosted on a web server so that it is available online.

Figure 3 below is a diagram of the FRoST Monitor and Rest application layers. In the diagram
below you can see that there are three main layers: Models, Views, and Controllers. Inside the
Models you can see that there are the actual data objects that our application uses to store and
display, as well as the REST Serializers that are able to serialize our data into JSON and make it
easily consumable by the REST api. The Controller layer handles the GET/POST requests
made by users and our application to send and receive data. The View layer is the piece of the

application that allows our webpage to be created and displayed with data from the models.

Models
REST
Serializers Telescope Weather Users
Views
REST
Endpoints Web Page Interface
Controllers
REST
Request/Response AJAX Handlers
Handlers

Figure 3: Layered View of FRoST Monitor Architecture

The FRoST Monitor application will use a fusion of two architectures Model, View,
Controller architecture, and RESTful architecture. Inside our Django project you may recall
that we have created two separate applications. The MVC will be used in the implementation
of the web application interface and the RESTful architecture will be used for the jack frost

application, which will handle http request to api endpoints including ajax request from the

frost monitor web application and external request from data collecting gateway machines. An
overview of how the RESTful architecture works with our standard Django MVC

architecture can be seen below in Figure 4.

e s

Small devices
& Browsers

Controller

REST lq—-] 39 Party

Figure 4: REST & MVC Architecture Diagram

MODEL

Each model is just

a class in our app,
representing a

group of related
functions. The model
will be told what

After the Controller to do by the Controller,
gets the information and return the results.
requested, it sends

it back to the user,

with the appropriate 2 3

View (or template).

P
4 e.g.5 POST The Controller deter-
$ GET mines what to do
with the data the user
Create model input from the view,
U) " i objects, call and sends it off to
SEENPAL S S0Me ACIENL ight i the right model for
perhaps from a form or e EInHE fnE hos the fo?].
by clicking a button.
I
CONTROLLER

Figure 5: MVC Diagram

Module and Interface Description

Django
MVC framework vs Django MTV framework.
Our project will be using django at its core. This allows us to set up the website using a
commonly used MVC framework. The MV C framework consists of 3 main components;
Model, View, and Controller. The model portion of the framework consists of all of the classes
that we will need for the project. The View is basically what will appear on the webpage. The
controller is what links the Model and the View together.

In Django the underlying MV C architecture is actually slightly different from the classic MVC
approach. Models are still Models in Django, but a View is actually called a Template, and a
Controller is actually called a View. This means that a Django Template is actually what you

see on the webpage, and a View links the classes in a Model together with a Template.

' :
1 i .
! Browser El\> $:>
1 ! :

4} View Model i Dalabase

Tompiae ¢ ¢ Q:,

Figure 6.1: Django MTV Diagram

Flow of data in a Django MTV framework.
Figure 6 shown above showcases a brief overview of the flow of data in a basic Django
application, beginning with a request from a browser and resulting in a web page produced

back to the browser.

When a request is made to view a webpage provided by a Django application, it is first
referenced in a list of url patterns located in a file “url.py”. The url patterns in this file will link

directly to the View portion of the MTV framework by accessing a file called “views.py”

10

The file “view.py” basically holds all of the functionality for the Django application (which
explains why we reference these as “controllers”), and uses the classes defined in your Model to

manipulate the data before sending the data to a template.

The Model keeps all of the models in a file labelled “models.py”. Once a class is defined in this
file, any objects created from each class will automatically be added to an SQLite database that
is maintained inside the Django app. The requested data from the database will then be

returned back to the View, and then returned to template.

Templates are used to dictate how the processed data will look on a webpage after it has been
requested. A template consists of all of the basic utilities that can be included in any html

document. Each page in a Django project will require its own template.

Urls.py

» o«

The url patterns in the “urls.py” file include “index”, “admin”, “login_admin”, and “ajax”. Each
url pattern sends a request to the View which calls a function by the same name in the
“views.py’ file. For example, the url pattern for “index” uses a line of code called “views.index”,
and will call the function “index”, from the file “views.py”. This means that “views.py” will only
consist of the 4 functions listed above. This “urls.py” file handles the url routing for the django

application.

Models.py

In Django, database tables are created via python classes. These classes are individually
referenced as a “model” and all together we call our database entries the “Models”. In the
FRoST Monitor System we currently have three models which are the Telescope Data,
W eather Data, and the User Data.

Telescope Status Class
The fields for the Telescope Data are “pointing_position”, “dome_position”, “local_time”,
“date_added”, and “last_issued_command”. This model is displayed within our template so that

our users can view the telescope data at anytime.

The “last_issued_command” field will be useful in the case of any disruptions in
communication between the application and the dome, as well as any unforeseen failures,
because it will be possible to see what the telescope was doing during a point of failure. The
“date_added” field gets stored along with all of the other information in the class when a new
instance of “TelescopeStatusInformation” is created in the database. This allows the View to
request the most recent instance of the class in the database, or request any amount of
instances, and order them by date, which would be handy for building a chart that tracks status

over time. For example, it would be possible to view the last issued command given to the

11

telescope, or even view a list of the last 30 commands on a specified date range, by using both

“last_issued_command”, and “date_added” fields.

The “dome_position” and “pointing_position” fields are important entries for the class. These
fields allow us to trace the facing direction of both the telescope and the dome, as well as
compare the orientation of each with each other. A mismatch in alignment between the
telescope and the dome would result in black images taken by the telescope, because it is
actually photographing the inside of the dome rather than the night sky.

TelescopeStatusinformation(models.Model)

pointing_position = models. IntegerField()

dome_position = models.CharField{max_length=64)
local_time = models.DateTimeField()

date_added = models.DateField()

last_issued_command = models.CharField(max_length=64)

Figure 6.2: Telescope Status Class UML

Weather Status Class
The Weather Data model is made up of “current_temp”, “humidity”, “dewpoint”,
“wind_speed”, “wind_direction”, and “local_time”. These are the attributes of our weather

model that allows users to view important weather information within our application.

As mentioned above, the time and date fields will allow whether information to be requested
and displayed across a wide range of time. This will allow us to display the weather data in
different ways. For example, a graph could be constructed that would show the temperature
over the course of the previous 3 days, or all of the temperature readings could be gathered in

the range of an entire day to produce a high and low temperature for that day.

WeatherStatusinformation{models.Model)

current_temp = models.DecimalField{max_digits=10,decimal_places=2)
hurmidity = models.DecimalField{max_digits=10,decimal_places=2)
dewpoint = models. DecimalField(max_digits=10,decimal_places=2)
wind_speed = models.DecimalField({max_digits=10,decimal_places=2)
wind_direction = models. CharField{max_length=64)

local_time = models. DateTimeField()

test_local_time = models.DateTimeField{)

Figure 6.3: Weather Status Class UML

12

User Class

The User model is actually a model that is built in to Django and does not require setup or
explicit definition. The default fields for a user in Django are “username”, “email”,
“admin_status”, “password”. These fields are all we need for our user models so we intend on

keeping them the way they currently are.

User Class

username: str
email: str
admin_status: int
password: str

Figure 6.4: User Class UML

Views.py

“Views.py” will consist of 4 functions; “index”, “admin”, “login_admin”, and “ajax”. These
functions return data to specific web pages within our web application. Each of the functions
in the View are referenced by the “urls.py” file, and are called after being requested by the

corresponding URL address in the Django application.

The View is not responsible for how the data is displayed, but rather what data will be
displayed. The View is the section in which all of the functionality for the web application will
reside. It is responsible for requesting queries from the database, and then manipulating and
organizing the data before passing it off to a template for displaying to a bowser. For example,
the request for weather information in a date range to be displayed in graph for would start in

the “views.py’ file.

Index

The index function currently generates the most recent weather data to display on the index
page. This will eventually be expanded to include extra data such as the latest all-sky-cam
image, last given telescope command, and any other pieces of data that would be relevant to

have on the front page.

Login_Admin
This function simply calls “login.html” template which requires no additional data from the

database. This login web page allows users to input a username and password.

Admin

13

This function checks to see it the correct login information is given. If the login information
does not match the information saved in the database, then the user is referred back to the
previous login screen. If the information provided is correct, then the user is referred to the

“admin.html” page, which will contain the emergency shutdown button for the telescope.

Ajax
The purpose of the “ajax” function is to gather the most recent weather information. This
information will be updated periodically and reflected on the webpage without the need for a

page refresh by referencing the “ajax” output in a template.

Templates

The templates used in the Django application are typical of any webpage in that they can be
written in HTML, and use tools to augment the page such as CSS and JavaScript. The fields in
the Model classes are called and manipulated by the View which results in a query of instances
from the Model classes. These instances can then be utilized in a template by referencing the
returned results from the View. This makes the content displayed in the webpage to be

dynamic.

In a Django application, the html content you view is not always static, which is great for
modern dynamic web applications. Templates can be fed dynamic queries that are requested
by the View before the pages are actually displayed to the user. For example, every time a user
visits the “index” template within our project, Django’s templating system will go and fetch the
latest database information to be loaded into our template. This is a very powerful tool,
because this allows our index page to always display the latest data from the database, without

the need for a POST request or a page refresh.

We intend on continually leveraging the template system to make our application as useful as
possible.

Implementation Plan

The following section outlines the steps and milestones that need to be completed so that the
FRoST Monitor System can be implemented on time. Figure 7.1 below depicts a rough project

timeline and includes 10 major implementation milestones.

14

Nice-to- User
Testing

Make sure layout
works with users'
expectations

Django + Deplay Deploy
Rest + Ajax Django App Script haves
Django works with Deploy our App to Deploy Script to Overlays, and other
REST and displays datal NAU Server Nuthatch and feed cool stuff
data to django

Research

Find out how to get
django app on NAU

Creation

Create script that will
get/post data via REST

Images
Display cool looking
graphs/images on

server django site

Overhaul refinement

Responsive and Good Make any needed
looking site layout changes

Figure 7.1: FRoST Monitor System Timeline

Figure 7.2 below depicts a gantt chart representation of the project's current milestones and

completion dates.

Schedule For Capstone Project

|IDates

‘Fall Semester |January February March April

Completed Milestones

Understand Project Description
Technical Feasibility Document
Requirements Elicitation

Initial Proof of Concept
Integrate Django, Rest, & Ajax
Deployment Research

Upcoming Milestones
Deploy Django App
Script Creation

Deploy Script

Graphs & Images
Nice-to-Haves

User Testing
Ul/UXRefinement

Current Progress

Figure 7.2: FRoST Monitor System Gantt Chart

1. Django with Ajax

An important part of the FRoST Monitor System is being able to display the latest weather and
telescope data within a webpage. In order to update our webpage dynamically with current
data, we will need to get our django application working together with asynchronous
javascript (Ajax) calls that fetch updated data. Without the use of Ajax, our webpage would
need to be refreshed in order to display the latest data - which takes valuable time. As of the

time of writing this document, this milestone has been completed.

15

. Deployment Research

Successfully implementing our application requires us to be able to actually deploy alive
version of our webpage to the client's server. Due to our team’s lack of experience in deploying
django projects to live server environments, this milestone consists of our team coming

together and researching the details of django deployment.

Application Deployment

Once our team figures out a way to deploy a simple django web application to our clients
server’s, we will then be able to deploy our main developed code for live testing. After this

milestone is completed, our project will be publically available and easily testable.

. Script Development
The FRoST Monitor System will be relying on a script that is able to fetch and post JSON data

to our deployed django application via the Django Rest Framework. This script is in the early
stages of development now, and should be completed within a few weeks time. Once this
script is created, it will be placed on nuthatch and feed our webpage the latest weather and

telescope data.

. Script Deployment

After developing the script that fetches and posts the latest data to our webpage, we will need
to deploy the script onto the client’s nuthatch machine. Nuthatch is a machine that has access
to the latest data for our application, thus is required for the script to post accurate data. Once
the script is deployed to nuthatch, the FRoST Monitor System will be using and displaying the
latest data.

. Graphs & Images

Implementing the ability for our application to display graphs and images is an important part
of the FRoST Monitor System. Having the ability to view graphs and diagrams makes it very
easy for users to view large datasets quickly and concisely. This milestone consists of
researching the latest and best graphing techniques inside of a django application. Our team
has researched a few solutions for this milestone and have decided that a JavaScript framework
will be what we use to display graphs. Django is able to store and display image data within its
sql database, therefore we intend on using this built in feature to display images within our

webpage.

16

7. Nice-To-Haves

Atthis point in our projects implementation and timeline, the major requirements for the
project have already been completed. This project milestone is intended to cover the
“nice-to-haves” of our project such as a Telescope Status Overlay. The telescope status overlay
will be an image of the night sky overlaid with the actual current pointing position of the
telescope relative to the sky. The implementation details for this section are not very clear as

our team is focused on some of the key requirements of our project at this time.

8. User Interface Overhaul

After completing the nice-to-haves for the FRoST Monitor System we will work as a team to
revise the interface and usability of our web application. Focusing on building a clear and
concise interface is crucial for the success of our application because our project relies on
having the ability for users to quickly view important information. Once we believe our
interface has a solid design and is easy to use, we will turn our focus to making the webpage

responsive and accessible for all users on all devices.

9. User Testing

Once our interface has been designed and deployed we will need to test the usability of our web
application with actual users. We plan on having our sponsor’s and others test the interface
and features of our web application so that we can better understand any remaining issues.
Once we have detected any issues we will try our best to improve the interface and application

until it is working as intended.

10.Application Refinement

The final step to implementing the FRoST Monitor System is refining both the interface and
application features so that they meet the needs and requirements of our sponsors. We will
dedicate a good amount of time to demoing our application to our clients and revising any
issues that arise from those demos. Once we have completed a few refinement cycles, our

application should be completed and fully functional.

Conclusion

As ateam, we feel that this project has great potential to very useful to our client. It will enable
them to more effectively use their telescope to scan possible impactors and learn about the

NEOs, and thus making a large impact in their productivity.

17

This project consists of three main parts: the Nuthatch machine, the Django Rest framework,
and the FRoST Monitor web page itself. This makes the project as simple as possible which
makes it easy to design and implement. In the end, our client will be maintaining it, so having a

simple design is best for them and make them happy about having this product.

18

References

e Figure 4:REST & MVC Diagram,
http://criticaltechnology.blogspot.com/2011/08/mobile-devices-and-good-architect

ure.html

e Figure 5: MVC Diagram,
http://www.onextrapixel.com/wp-content/uploads/2012/02/mvc-model.jpg

19

