TEAM SKYWARD

—Frost Monitor Project ——

Final Report
5/4/2017

Team Name:

Skyward

Team Members:
Gage Cottrell

Justin Kincaid
Chris French

Alexander Sears

Sponsors:
Dr. Michael Mommert and Dr. David Trilling

Mentor:
Dr. Otte

Table of Contents

Introduction

Team Process Overview
Requirements Overview
Implementation Overview
Architectural Overview

Module and Interface Description
Testing Overview

Project Timeline

Future Work

Conclusion

o U A BN

10
16
30
31
31

https://docs.google.com/document/d/1ZKhWaJ-e5MBKo7jnO0fOsZ8KO2AdrA6W9QRG4osxTgQ/edit#heading=h.in8hj9otr2iv

Introduction

Document Purpose

The purpose of this document is to outline the technical aspects of the FRoST Monitor System
and the technologies used to develop and implement the application. The goal of this
document is to give the reader a better understanding of how the application is being
developed and implemented through examples of requirements, constraints, and system
architecture.

FRoST Monitor Project
We are Team Skyward and we are building an online dashboard for the FRoST Monitor. The

FRoST monitor is a telescope dome that is a few miles south of the Northern Arizona campus.
The FRoST monitor dashboard will display vital telescope and weather information quickly
and easily. Weather information gathered from the FRoST monitor and displayed on the
dashboard will include data such as current temperature, dew point temperature, wind, and
the latest image from the all-sky-cam. All of this data is supplementary to help our clients use
the FRoST monitor telescope to photograph and study Near Earth Objects.

Near Earth Objects (NEOs)

Everyday about one hundred tons of particles originating from outside of Earth’s atmosphere
makes contact with Earth’s surface. While the vast majority of the particles contacting Earth
are very small, instances of larger objects impacting the surface have been recorded. Roughly
every 10,000 years, a rocky or iron asteroid larger than 100 meters impacts the earth and
causes localized destruction. On an average of every few 100,000 years, asteroids larger than 1
kilometer impact the earth and cause global disasters that can severely impact life on Earth.
Due to the risk of having Earth impacted by objects that have the potential to cause massive

destruction, it is vital that near earth objects be discovered, tracked, and analyzed.

Researching Near Earth Objects (NEOs) is an ongoing joint effort between many countries
and governments. Using telescopes, it is possible to discover and track NEOs as they move
throughout the solar system. Making publically available the information gained from NEO
discoveries, allows for a collaborative environment in which NEOs can be discovered, tracked,
and analyzed very quickly. To date, there have been more than 15,000 different NEOs
discovered. As telescope technology advances, so do the amount of NEOs discovered. Figure 1

below depicts the discovery rate of near-earth-asteroids from 1980 to present date.

The following chart shows the cumulative number of known Near-Earth Asteroids (NEAs) versus time. Totals are shown
for NEAs of all sizes, those NEAs larger than ~140m in size, and those larger than ~1km in size.
Near-Earth Asteroids Discovered =
Most recent discovery: 2016-Nov-10
17 500 17 500
M Al

15 000 — 140m+ 15 000
ki M 1km+
£
-]
2 12500 I 12 500
2
=}
5 10000 —| t 10 000
2
E
S
Z 7500+ — 7 500
2
2 5000 L s 000
E
E
v

2500 — — 2500

o T U =0
1980 1990 2000 2010
Discovery Date

Figure 1: Near-Earth Asteroids Discovered

Nuthatch Server

“Nuthatch”is a server built and maintained by our clients. Our team will not be responsible in
any way for the development or maintenance of the Nuthatch server. This server will gather
and host weather and telescope information. Our team will then take this information and use

it to populate all of the required data to display on our web application.

Team-Process Overview

For our project, we used only a few tools. Our team is not big and our project is not very
complicated, so it was sufficient to use some simple tools. For version control, we used git and
git accessories like Bitbucket, which hosted our repository. As for CASE tools, we did not use
any. The only software design help we used were a few pieces of paper and a whiteboard. We
used Discord to record our tasks and for communication between team members. It was on
Discord that we posted our agendas, our to-do lists and our notes from various meetings.

We shuffled our roles around a lot, we did not have static roles at all, except for the team lead.
Originally everyone decided what jobs they wanted to do, but by the end we all ended up
working on anything we could when it was available. We all programmed both frontend and
backend, as well as writing the documents. The team lead was the main mode of
communication with the sponsor, although sometimes other group members sent
communication as well.

We had weekly meetings with each other in the spring semester, and we used that time to figure
out problems we were having with the programming, as well as any difficulties with reports. In
between the meetings we were usually very productive, and everyone managed to stay on
schedule and complete all assigned work.

Requirements

Project Requirements

The first requirement is a web application that will host display all of the weather and status
information that is gathered from the telescope. The second is including a password protected
user account for functionality and information that will be hosted behind a layer of security.
All other requirements involve communication between the FRoST monitor web application
and our clients server Nuthatch in order to get all of the necessary data to display on the web

application.

Brief project requirements list includes:
o Web Application
O Access to our clients Nuthatch server

o Database to store mirror of data hosted on Nuthatch server
O Ability to update data to web application in real time
© Maintain alist of issued commands to the telescope

e Single Password Protected User

o Dome shutdown button

Implementation Overview

The FRoST Monitor system will be built to give researchers and users of FRoST the ease of
being able to quickly and efficiently check on the live status of the telescope and surrounding
weather conditions. The FRoST Monitor System will be built using the Django web
development framework - and will be using the Django REST Framework as a means to
receive current data. The entire FRoST Monitor System will be created within a virtual
environment using Anaconda, to ensure that our application can easily be modified without

worrying about other outside factors.

Using Anaconda, we will install a virtual environment on our clients server so that we may
make any changes we need in order for Django to run the way we want it, just so these changes
aren’t made for the whole machine. We aren’t the only ones using it since it belongs to the
whole NAU physics department, so it’s best for us to use a virtual environment in order to
keep our footprint on the system to a minimum. The machine will have to be configured to
direct certain traffic to this environment in order to provide access to the FRoST Monitor

system.

The Django REST Framework will be used to communicate with the client’s own data
processing machine. That machine will have a script that sends data to the web server which,

since the data will be available locally, will make it quick and easy to display data on the web

page.

The Django web development framework utilizes a Model View Controller (MVC)
architecture that is essentially a 3-tier architecture. This document will later discuss in detail

this architecture and its strengths and weaknesses.

The webpage that is produced with the Django framework will update the information being
displayed automatically every 60 seconds using asynchronous JavaScript (AJAX) calls.
Implementing AJAX into our Django application allows the application to automatically
update the data being displayed, which is extremely convenient for users who need to view the
latest data available.

The following section of this document will discuss in detail the architecture behind the
FRoST Monitor System.

Architectural Overview

Application overview

Users Interfaces Use Cases Data Technology Enablers
Web Page l
e Weather Monitor Weather Information Web Server
> |Telescope Status Telescope Metrics Message Handling
View N.E.O. Target List | > Telescope Science Data | [#+—* Data Collection
Shutdown Telescope User Data Event Listener

h

Web Service

Other

Figure 1: Application Overview and Diagram

User and delivery

The view in Figure 1 allows for different audiences to access the frost monitor through
different channels. These two channels are:
® Researches and the public users will access application over the internet using a web
browser. These are the main users of the FRoST Monitor System.
® Other users such as the web service requester will access the application through a web
service implemented in a ReSTful service. Essentially these “other users” are
applications/systems that access our application via the REST service to get/post data
such as Nuthatch.

Core application uses

Figure 1 highlights the use-cases for the Frost Monitor application. These uses are the
expectations of information to be presented to the user.
® Monitor Weather
0 The user will be able to monitor current weather conditions around and
surrounding the FRoST telescope.

® Retrieve Telescope Status
O The user will be able to quickly observe the current telescope status. An
example is where the telescope is currently pointing in the sky.
e ViewN.E.Olistand information
O The user will be able to retrieve information on the current and upcoming
Near Earth Objects that are to be observed by the telescope.
® Emergency Shutdown
© Anadmin user will be able to login and send a signal to the telescope. This

signal will trigger a mechanical response to the telescope to shut the dome.

Data

The core information and data constructs required to realize the core application uses are
highlighted in Figure 1. The follow data is fundamental to the core use cases.
o Weather
O The current weather data will be the current weather conditions of
surrounding the FRoST telescope. This system will manage the propagation
of weather data from web services and local hardware.
® Telescope Metrics
0 Telescope Metrics represent the physical status of the FRoST telescope.
Examples are the current telescope position, and dome status.
® Telescope Observation Data
O The telescope observational data represents the past and current observed data
from the FRoST telescope. Examples of the data will include alist of N.E.O
that are queued to be observed and pictures and telemetry data of past
observations.
o User
O The user data will allow for permission based action between the web
application as well as the web service. There will be a user to allow for web
service data push’s. There will also be a user for access to the emergency
shutdown.

Technology Enablers

Figure 1 highlights the key set of components to support implementation of the Frost Monitor
application.
® Web Server
o Theapplication will reside on a web server. The web server will be required

for providing access to the FRoST monitor application interface and the REST
api.

® Message Handling
o Will manage request over http from the event listeners. The handler will
provide the implementation of client request for information and web service
request.
e Data Collection
o0 The data collection will be implemented on a gateway machine that will
propagate weather and telescope data from the telescope and other external
sources. This module will also be responsible for sending data to the web
database through the REST api.
e EventListeners
o0 This module is the main function of the REST api. It will handle incoming
events and request made over http from clients and web service users. It will

then hand off the messages to the message handler.

The FRoST Monitor application is built predominantly upon the Django framework. The
Django framework uses a 3-tier architecture very similar to the popular Model, View,
Controller (MVC) architecture. Figure 2 can be seen below and is a diagram of the
implemented framework in respect to the web application. In Figure 2 below you can see that a
Django project can have multiple applications within itself, and that the FRoST Monitor

System is using two applications in tandem.

Web Server

Django Project

e N

FRoST Monitor JackFrost REST
Application Application

Figure 2: Web Application Layers Diagram

In Figure 2 above you see that there are two applications within the single Django Project.
These two applications work together to accomplish the goals of the FRoST Monitor System.
The FRoST Monitor Application is the application that is built upon the standard Django

framework and is modeled after an MV C architecture. The JackFrost REST Application is the
application that is built upon the Django REST Framework, and follows a REST architecture.
Keeping the standard Django application separate from the REST application allows us to
keep a separation of concerns within our Django project, and will allow for easy modification
in the future. Both of our applications live within the same Django project, and that Django

projectis hosted on a web server so that it is available online.

Figure 3 below is a diagram of the FRoST Monitor and Rest application layers. In the diagram
below you can see that there are three main layers: Models, Views, and Controllers. Inside the
Models you can see that there are the actual data objects that our application uses to store and
display, as well as the REST Serializers that are able to serialize our data into JSON and make it
easily consumable by the REST api. The Controller layer handles the GET/POST requests
made by users and our application to send and receive data. The View layer is the piece of the

application that allows our webpage to be created and displayed with data from the models.

Models
REST
Serializers Telescope Weather Users
Views
REST
Endpoints Web Page Interface
Controllers
REST
Request/Response AJAX Handlers
Handlers

Figure 3: Layered View of FRoST Monitor Architecture

The FRoST Monitor application will use a fusion of two architectures Model, View,
Controller architecture, and RESTful architecture. Inside our Django project you may recall
that we have created two separate applications. The MV C will be used in the implementation

of the web application interface and the RESTful architecture will be used for the jack frost

application, which will handle http request to api endpoints including ajax request from the
frost monitor web application and external request from data collecting gateway machines. An
overview of how the RESTful architecture works with our standard Django MVC

architecture can be seen below in Figure 4.

View »

Small devices
& Browsers

Controller

Figure 4: REST & MVC Architecture Diagram

Module and Interface Description

Django
MVC framework vs Django MTV framework.
Our project will be using django at its core. This allows us to set up the website using a
commonly used MVC framework. The MV C framework consists of 3 main components;
Model, View, and Controller. The model portion of the framework consists of all of the classes
that we will need for the project. The View is basically what will appear on the webpage. The
controller is what links the Model and the View together.

In Django the underlying MV C architecture is actually slightly different from the classic MVC
approach. Models are still Models in Django, but a View is actually called a Template, and a
Controller is actually called a View. This means that a Django Template is actually what you

see on the webpage, and a View links the classes in a Model together with a Template.

10

[} i E
1 i i
! Browser |:{> # :>
1 : E

4} View Madel i Database

Tompiat ¢ ¢ <:l

Figure 6.1: Django MTV Diagram

Flow of data in a Django MTV framework.
Figure 6 shown above showcases a brief overview of the flow of data in a basic Django
application, beginning with a request from a browser and resulting in a web page produced

back to the browser.

When arequest is made to view a webpage provided by a Django application, it is first
referenced in a list of url patterns located in a file “url.py”. The url patterns in this file will link
directly to the View portion of the MTV framework by accessing a file called “views.py”

The file “view.py” basically holds all of the functionality for the Django application (which
explains why we reference these as “controllers”), and uses the classes defined in your Model to

manipulate the data before sending the data to a template.

The Model keeps all of the models in a file labelled “models.py”. Once a class is defined in this
file, any objects created from each class will automatically be added to an SQLite database that
is maintained inside the Django app. The requested data from the database will then be

returned back to the View, and then returned to template.

Templates are used to dictate how the processed data will look on a webpage after it has been
requested. A template consists of all of the basic utilities that can be included in any html

document. Each page in a Django project will require its own template.

Urls.py
The url patterns in the “urls.py” file include “index”, “admin”, “login_admin”, and “ajax”. Each
url pattern sends a request to the View which calls a function by the same name in the
“views.py’ file. For example, the url pattern for “index” uses a line of code called “views.index”,
and will call the function “index”, from the file “views.py”. This means that “views.py” will only

11

consist of the 4 functions listed above. This “urls.py” file handles the url routing for the django

application.

Models.py

In Django, database tables are created via python classes. These classes are individually
referenced as a “model” and all together we call our database entries the “Models”. In the
FRoST Monitor System we currently have three models which are the Telescope Data,
Weather Data, and the User Data.

Telescope Status Class
The fields for the Telescope Data are “pointing_position”, “dome_position”, “local_time”,
“date_added”, and “last_issued_command”. This model is displayed within our template so that

our users can view the telescope data at anytime.

The “last_issued_command” field will be useful in the case of any disruptions in
communication between the application and the dome, as well as any unforeseen failures,
because it will be possible to see what the telescope was doing during a point of failure. The
“date_added” field gets stored along with all of the other information in the class when a new
instance of “TelescopeStatusInformation” is created in the database. This allows the View to
request the most recent instance of the class in the database, or request any amount of
instances, and order them by date, which would be handy for building a chart that tracks status
over time. For example, it would be possible to view the last issued command given to the
telescope, or even view a list of the last 30 commands on a specified date range, by using both

“last_issued_command”, and “date_added” fields.

The “dome_position” and “pointing_position” fields are important entries for the class. These
fields allow us to trace the facing direction of both the telescope and the dome, as well as
compare the orientation of each with each other. A mismatch in alignment between the
telescope and the dome would result in black images taken by the telescope, because it is
actually photographing the inside of the dome rather than the night sky.

TelescopeStatusinformation(models.Model)

pointing_position = models. IntegerField()

dome_position = models.CharField{max_length=64)
local_time = models.DateTimeField()

date_added = models.DateField()

last_issued_command = models.CharField(max_length=64)

Figure 6.2: Telescope Status Class UML

12

Weather Status Class
The Weather Data model is made up of “current_temp”, “humidity”, “dewpoint”,
“wind_speed”, “wind_direction”, and “local_time”. These are the attributes of our weather

model that allows users to view important weather information within our application.

As mentioned above, the time and date fields will allow whether information to be requested
and displayed across a wide range of time. This will allow us to display the weather data in
different ways. For example, a graph could be constructed that would show the temperature
over the course of the previous 3 days, or all of the temperature readings could be gathered in

the range of an entire day to produce a high and low temperature for that day.

WeatherStatusinformation{models.Model)

current_temp = models.DecimalField{max_digits=10,decimal_places=2)
hurmidity = models. DecimalField{max_digits=10,decimal_places=2)
dewpoint = models. DecimalField(max_digits=10,decimal_places=2)
wind_speed = models.DecimalField{max_digits=10,decimal_places=2)
wind_direction = models. CharField{max_length=64)

local_time = models. DateTimeField()

test_local_time = models.DateTimeField{)

Figure 6.3: Weather Status Class UML

User Class
The User model is actually a model that is built in to Django and does not require setup or
explicit definition. The default fields for a user in Django are “username”, “email”,

“admin_status”, “password”. These fields are all we need for our user models so we intend on
keeping them the way they currently are.

User Class

username: str
email: str
admin_status: int
password: str

Figure 6.4: User Class UML

Views.py

“Views.py” will consist of 4 functions; “index”, “admin”, “login_admin”, and “ajax”. These

functions return data to specific web pages within our web application. Each of the functions

13

in the View are referenced by the “urls.py” file, and are called after being requested by the
corresponding URL address in the Django application.

The View is not responsible for how the data is displayed, but rather what data will be
displayed. The View is the section in which all of the functionality for the web application will
reside. It is responsible for requesting queries from the database, and then manipulating and
organizing the data before passing it off to a template for displaying to a bowser. For example,
the request for weather information in a date range to be displayed in graph for would start in

the “views.py’ file.

Index

The index function currently generates the most recent weather data to display on the index
page. This will eventually be expanded to include extra data such as the latest all-sky-cam
image, last given telescope command, and any other pieces of data that would be relevant to

have on the front page.

Login_Admin
This function simply calls “login.html” template which requires no additional data from the

database. This login web page allows users to input a username and password.

Admin

This function checks to see it the correct login information is given. If the login information
does not match the information saved in the database, then the user is referred back to the
previous login screen. If the information provided is correct, then the user is referred to the

“admin.html” page, which will contain the emergency shutdown button for the telescope.

Ajax
The purpose of the “ajax” function is to gather the most recent weather information. This
information will be updated periodically and reflected on the webpage without the need for a

page refresh by referencing the “ajax” output in a template.

Templates

The templates used in the Django application are typical of any webpage in that they can be
written in HTML, and use tools to augment the page such as CSS and JavaScript. The fields in
the Model classes are called and manipulated by the View which results in a query of instances
from the Model classes. These instances can then be utilized in a template by referencing the
returned results from the View. This makes the content displayed in the webpage to be

dynamic.

In a Django application, the html content you view is not always static, which is great for

modern dynamic web applications. Templates can be fed dynamic queries that are requested

14

by the View before the pages are actually displayed to the user. For example, every time a user
visits the “index” template within our project, Django’s templating system will go and fetch the
latest database information to be loaded into our template. This is a very powerful tool,
because this allows our index page to always display the latest data from the database, without
the need for a POST request or a page refresh.

We intend on continually leveraging the template system to make our application as useful as
possible.

15

Testing Overview

Project Background & Motivation

We are developing an online dashboard which displays vital information and metrics for the
Flagstaff Robotic Survey Telescope (FRoST). The purpose of FRoST is to carry out follow up
research on near-earth objects (NEOs) so that researchers can better analyse and track NEOs.
With more than 15,000 already discovered NEOs, there is a great need for research to be done
on the already discovered objects - most importantly so that we might be able to predict
impacts with these objects and Earth.

Our online dashboard, known as the Frost Monitor System, displays various information
about FRoST and weather local to the telescope. Using our the Frost Monitor System,
researchers and operators of FRoST will be able to quickly see information that would
previously require many steps to reach. Therefore, the main motivation for developing the
Frost Monitor System is that it will be able to save researchers time when looking for the
information that FRoST works with.

General Software Testing Overview

As with all software being developed, there comes a time when the developers must be sure
that the software behaves as it should and that the software meets the requirements that were
initially designed before development began. Validating and verifying software is done in
many ways, and this process is more generally known as “software testing”. Software testing
can be done automatically using testing software, or manually by preparing tests of the system
and verifying the results of the tests. Many times software testing is carried out by using
various automated tests as well as manually creating tests specific to the software being tested.
Both automated and manually tests aim to find errors, faults, and failures within the software
being tested.

Testing Plan Overview

The Frost Monitor System has been in the development stage for about 90 days, and the
system’s requirements are nearly all implemented and designed. The next stage of
development for the Frost Monitor System is to carry out software testing. Our plans for

software testing involve unit testing, module integration testing, as well as usability testing.

16

We decided to use unit tests to validate the functionality of our software. Due to our
application being developed with Django - a python web development framework - we will be
able to easily carry out unit tests since python features an already created ‘unittests’ testing
package. Because the Frost Monitor System is comprised of two separate applications, we will
be carrying out unit tests within both of these applications separately. Using unit tests, we will
be able to verify that individual units of our software are working as per requirements and are

error free. Further detail will be given in the following “Unit Tests” section of this document.

Given that the Frost Monitor System is comprised of various modules, validating these
various modules work together as they should will be carried out via integration testing. We
felt that integration testing was necessary due to the fact that if one module in our system fails,
our system may not behave as it was intended. More detail regarding our integration tests can

be found later within this document.

The Frost Monitor System is a web-based application that users directly interact with and
view when using. Because our application aims to save the user's time, we must carry out
usability tests. Usability testing will allow us to make sure that our software is as user-friendly
and simple as possible, while still being highly effective. Usability testing involves having
actual users test the software by interacting with the system as a whole. By carefully analysing
how users interact with our system, we can then make changes to improve upon the system
and its functionalities. More details regarding our usability tests can be found within our

“usability testing” section further down in the document.

The following section of this document will describe in detail our unit tests for the Frost

Monitor System and its applications.

Unit Testing

Testing Approach

We have divided the unit testing into two main sections. The sections are logically divided
between the Frost Monitor front end application and the JackFrost back end application - the
two applications that comprise the Frost Monitor System. This ensures that each application
will be tested according to its own functionality. This will also allow for quick identification of
problem areas and will afford for each application to be tested individually without affecting
the other.

17

Each application will be divided into modules of similar functionality. Each module will have
test to evaluate its general functionality for all submodules. Each submodule will then have test

to evaluate unique critical elements within the submodule.

The unit test will be organized as follows:

1. Frost Monitor - front end
1.1. Views
1.1.1. Admin
1.2. Templates

1.3. Urls
2. JackFrost - back end
2.1. Views

2.1.1. View sets
2.2. Models

2.2.1. Data Models

2.2.2. Serializers
2.3. Urls

2.3.1. jackfrost/

This top down approach to unit testing the entirety of both applications will provide adequate
test coverage while reducing redundancy. Many of the methods and classes within the
submodules perform similar task with similar data. Unit test with a low test coverage that still
test the entire set of implemented data types,objects, and classes will produce the same results

as having tests for each individual method within the submodules.

Both the Frost Monitor (front end) application and JackFrost (back end) application are built
upon Django, an open source framework that is actively maintained and heavily tested. A
majority of the functionality of both applications are implemented using the built-in objects of
the framework. Testing that we instantiated the built-in objects within our application
correctly is important, while testing that the built-in objects themselves are implemented
error free is unnecessary within the context of this project. This is a guiding principle we used

in establishing our unit test cases.

We will be using Django’s built in test suite which is built on top of ‘unittest’ module in the
Python standard library. Django’s test-execution framework will provide all the necessary
utilities to perform unit test for both the front end and back end application. With Django’s
test framework we can easily perform, simulate and automate complex web application
interaction as well as integrate other web based testing software such as Selenium into the test

suite. To determine our code coverage we will be using Coverage.py - a testing tool that also

18

integrates within Django’s test suite. Coverage.py allows us to visualize where, what and how
much code our predetermined test are actually covering. This will help us decide if we need to

implement, modify or change test based on the statistics provided by Coverage.py.

Testing Plan

1. FROST MONITOR
1.1 Views.py

The views are responsible for handling HTTP Post and returning the HTML with
the rendered request.

e All views can:
o Return rendered HTML
o Receive HTTP POST
o Test will:
o Assert correctly rendered returns
o Assert correctly received HTTP POST

The table below shows sample test inputs with their respective outputs when unit testing
Views.py within the Frost Monitor System.

Test Inputs Test Outputs

Malformed HTTP POST Error

Correct HTTP POST True

No HTTP POST None

Method call with request HTTP Status code 200 & HTML doc with
correct title

Method call with no request HTTP Status code 200 & HTML doc with
correct title

1.1.1 admin view

The admin view handles the authentication page for admin and super
users for the Frost Monitor Application.

e The admin view can:

o Authenticate users

o Reroute users based on authentication
e Admin view test will:

o Assert only Authenticated user can login

19

o Assert correct reroute of URL

The table below shows the test inputs with their respective outputs when unit testing
Admin.py within the Frost Monitor System.

Test Inputs

Test Outputs

Super User Username & Password

True & 302 & correct URL redirect

Super User Username only

False & 302 & correct URL redirect

Super User Password only

False & 302 & correct URL redirect

Unregistered Username & Password

False & 302 & correct URL redirect

Unregistered Username only

False & 302 & correct URL redirect

Unregistered Password only

False & 302 & correct URL redirect

1.2 Templates

The templates are the static HTML pages that can include django tags that are
dynamically loaded by the views.py

e All templates:
o Have valid and well-formatted HTML
o Have valid external and internal links
o Test will:
o Assert correctly formated HTML
o Assert there are no broken links

The table below shows test inputs with their respective outputs when unit testing
template files within the Frost Monitor System.

Test Inputs Test Outputs
Load page from ‘client’ True

Search for broken links False

1.3 Urls.py

The urls.py is responsible for routing the URLSs to the correct views
corresponding to those uri.

20

e AllURLs can:
o Return the corresponding view

o Test will:
o Assert received HTTP Response
o Assert the correct view is returned

The table below shows sample test inputs with their respective outputs when unit testing
Urls.py within the Frost Monitor System.

Test Inputs Test Outputs

Malformed HTTP GET HTTP Status code 418

Correct HTTP GET HTTP Status code 200 & HTML doc with
correct title

2. Jack Frost
2.1 Views.py

The views are responsible for handling HTTP Post and returning the HTML with
the rendered request.

e Referto 1.1

2.1.1 ViewSet
ViewSet is a view that is used in the django-rest framework used to
display sets of data models in JSON format in an HTML document and is

also responsible for initializing the database query for GET request and
the Model serializer for POST request.

o All viewsets can :
m Return data from a HTTP GET request
m Receive data from a HTTP POST request
o Test will:
m Assert correctly returned HTTP GET request
m Assert correctly received HTTP POST request
o Note:
m Each viewset can have methods that are unique to their response
requirements, as individual response methods are implemented
their corresponding test will follow these same guidelines

The table below shows sample test inputs with their respective outputs when unit
testing Views.py within the Frost Monitor System (Specifically, JackFrost).

21

Test Inputs Test Outputs
Malformed HTTP POST HTTP Status code 400
Correct HTTP POST HTTP status code 200
Malformed HTTP GET HTTP Status code 400
Correct HTTP GET HTTP Status code 200
ANY restricted HTTP request HTTP Status code 405
2.2 Models.py

The models are python classes that represent the data used in the Frost Monitor

System. These data models can be divided into the following two categories.

2.2.1 Data Models
The Data Models are python classes that represent the data that is
gathered from the FRoST. The Model class is a built-in object from
Django framework. We will ignore all of the class methods that are not
overrode in the child class and focus on correct parameterization while
instantiating class variables.

o All models.py can :
m Instantiate Class variables that are data fields
m Access Class variables

o Test will:
m Assert correctly instantiated class variables
m Assert correctly assigned class variables

o Note:

m Each class variable can have a unique data type field. The test for

the different types of fields can follow these guidelines.

The table below shows sample test inputs with their respective outputs when unit testing
Models.py within the Frost Monitor System.

Test Inputs Test Outputs
Malformed models.*Field() parameters Error
Correct models.*Field() parameters True

22

Out of bounds models.*Field() parameters

Error

Correct data type class variable
assignment

Assigned value

Incorrect data type class variable
assignment

TypeError

2.2.2 Serializers.py

The Serializers define JackFrost API representation of the models. The
serializers is a built in class of the Django-rest framework. The serializer
is used to abstract the conversion of python data types into JSON or XML
responses and vise versa for request. In our use case we need to ensure
that the fields of our implemented serializers match to the implemented

models.

o All serializers.py can :

m Access their base model

m Access the fields

m Validate the fields with the fields of the base model

o Test will:

m Assert the validation of the base model fields with the serializer

fields

The table below shows sample test inputs with their respective outputs when unit testing

Serializers.py within the Frost Monitor System.

Test Inputs

Test Outputs

Validate instantiated serializer

Validated Values

2.3 Urls.py

The urls.py is responsible for routing the URLSs to the correct views

corresponding to those uri.
e Referto 1.3

2.3.1 jackfrost/

Jjackfrost/ is the entry point in the Frost Monitor domain for the JackFrost
REST API. All URI’s that follow jackfrost/ should be directed to their

corresponding view.
e Note:

23

o As models and data changes so will the entry points for API views.
As individual REST API response methods are implemented, their
corresponding test will follow these same guidelines

The table below shows sample test inputs with their respective outputs when unit testing
Urls.py within the Frost Monitor System (Specifically, JackFrost API).

Test Inputs Test Outputs

Malformed HTTP POST HTTP Status code 400

Correct HTTP POST HTTP status code 200 & correctly
formatted response JSON/HTML

Malformed HTTP GET HTTP Status code 400

Correct HTTP GET HTTP Status code 200 & correctly

formatted response JSON/HTML

ANY restricted HTTP request HTTP Status code 405

The results of these test will be studied along with the analysis of our code coverage. More
unit test will be developed and successfully completed until we are satisfied with the results.
We will then move onto integration testing with the confidence of the stability of our core
functionality.

Integration Testing

General Explanation

Our system consists of three main modules: The Nuthatch Data Collection script, the
JackFrost REST API, and the Frost Monitor web dashboard application. Each of these
represents a stage in the path that data takes on its journey to being displayed within the Frost
Monitor web dashboard. It is important to make sure that each module plays its part correctly
by communicating in the correct fashion with the other modules. This means that the
messages they pass between each other need to be formatted correctly, and no important
pieces of messages are left out. Error messages must be sent and handled gracefully so that the

system is resilient to complete system failure.

24

Our first module in our flow of data is the Nuthatch script. This is a python script that will
reach out to the nearby Lowell Observatory’s weather station in order to grab weather data,
and for everything else, will communicate with the FRoST Robotic Telescope. It interprets

and packages the data it receives into a format that is accepted by the JackFrost REST API.

When the JackFrost application receives data from the Nuthatch script, it stores the data into
the Frost Monitor System’s database according to the predefined models. The validity of the
data is checked automatically, as Django provides mechanisms for verifying input into the
database. For example, if the JackFrost application attempted to post model data that was

malformed, Django would automatically detect this and disallow the post from continuing.

The Frost Monitor application (front end) is the what the users are supposed to see; the web
dashboard containing all the charts, tables, and images. This is the main interface to the
system, providing a graphical way of viewing the information stored in the database. The
application sends requests to JackFrost in order to populate the web page, thus putting the
carefully gathered data to use. Both the Frost Monitor and JackFrost applications are
responsible for sending valid messages to each other in order to communicate and give each

other information.

Testing the Interfaces
Nuthatch and JackFrost

Nuthatch will send data to JackFrost according to the models we have implemented. Django
will automatically check the sent data against these models, and if there are any extra fields, or
missing fields, or incorrectly formatted fields, it will return with an error. Incorrectly

formatted fields could be a number where a string is expected.

The tables below specify the fields required for each model.

Weather
Temperature | Dewpoint | Humidity Wind Speed Wind Direction
Number Number Number Number Number
Telescope Status
Pointing Position Dome Position Local Time Last Command
Number Number Date Time String

25

Telescope Log

Log Type Log Content
Number Number
All Sky Image

Image Link Image Name Date Taken

Number Number Number

Target Information
Target Name | ra_deg ra_dec Scheduled Start Scheduled By
String Number Number Date Time String

For each of these models, if the JackFrost application does not receive all fields specified, it will
return an error and not add any data to the database, which will protect the validity of the

stored data.
JackFrost and Frost Monitor Applications

For data sent between the JackFrost and the Frost Monitor applications, the model schemes as
defined above are also applied for this interface. The data must be formatted the same way, and
with the same required fields. The same errors will be sent back, and all behaviors of JackFrost
are the same, such as not accepting incomplete data. This lets the two interfaces be consistent

with each other, and so we will not have to manage two different kinds of data formats.

Given that we can now have confidence in how effectively our modules communicate with
one another, we can move onto testing how well the system and the users interact during

usability testing.

26

Usability Testing

General Explanation

Our project is essentially a single web page with various modules that will showcase weather
and telescope data. The look and layout for these modules must meet certain standards and
criteria set by our client. The page must load in a reasonable amount of time, must be in the
designated layout, and must be able to communicate information quickly and effectively. Not
only is this important to meet the client's standards, but will be important for accommodating

any additional system users in the future.

Another important facet of user testing will include security. We obviously don’t want
unauthorized access, but it would be really nice if the intended users were able to successfully

log into the website to use features that are not available to anyone else.

For the most part this testing phase will be walking the client through all of the functionality
that the website and getting feedback on any changes that must be made. The client will use the
website and review it for usability, information accuracy, and navigation. Necessary changes

may be made before the client may test further.

The time frame for user testing will begin as soon as testable features are added to the website
once deployed, and will continue until the project deadline has lapsed. The test subjects for the
user tests will include our client and any additional users from their team. This will include

anyone that will continue to use the completed website long term.

Any and all problems found will be documented and communicated to our team, either via
email, or during weekly meetings. We will create a detailed list of any issues that arise so that
we can easily look back on them. Our team will then make the necessary updates, and inform
the client on the changes so that testing may continue further. Essentially, our usability testing
will be conducted in an iterative fashion where we will: test, gather results, implement

changes, then repeat the previous steps until completion.

Usability Testing Plan

1. FrontPage Testing
a. Module Layout
b. Module Information and Accuracy
c. EaseofUse

27

2. Security Features Testing
a. Password
b. Emergency Shutdown Button
c. TargetList Editor

Front Page Testing

Module Layout

The layout of modules on the web page will soon reflect the design that was given to us by the
client. It is possible that after the client sees the finished product, that he may wish to make
updates to the overall design. This will be tested as needed and may be ongoing until the
project is complete. Any suggestions for an updated layout may be corrected and pushed back
to the client for review.

Additionally the user will be testing the layout of the modules across a breadth of various
devices in order to see if the modules are sized correctly and appear in the correct order on
different sized displays such as a tablet or a cell phone display. Modules may appear in any size
of our choosing, but must be scalable to appear correctly on any size display, and when the
modules are all stacked one on top of the other on a smaller display, they must appear in the
correct order. As the client tests the front page across various screen sizes, they will make note

of aspects of the modules that may not be to their liking and we can make changes accordingly.

Module Information

Various modules on the front page will display information such as temperature, wind speed,
and dew point. Depending on the amount of data that is pulled in to populate the graphs, they
may become easily cluttered, or may not have enough data at all. Perhaps headings or labels

may be missing.

Each of the modules on the front page are very customizable. Our client will be reviewing
these modules individually to test for errors in displayed information or to simply update the
displayed format. For example, the client may not be able to actually see the data on the
temperature graph because the information is too condensed, or perhaps the layout is correct,
but the graph is too small. After testing, we would have to make the necessary changes before

allowing the client to test again.

Ease of Use

This isjust a general mark of quality for the page itself. We will have the client click around
and interact with modules on the front page to see is the overall page is easy for the client to
use. Minor tweaks to the page can be made to keep the design satisfactory for the client. The
client in this case just has to use the site for a bit to see if any general settings or changes should

be made to suit their needs.

28

Security Testing

Password Testing
Obviously the password given to the client must work and allow the user to get behind the wall
of security to access features. We will have the client test out the password until they are

satisfied that it works and ensure that everything functions as intended.

Atthis point the password may be changed to whatever the client would like, and they can test

it to make sure it works.

Emergency Shutdown Button

After the client has accessed the button, they will be able to test out the button to see if the
satisfactory functionality is present. The implementation of the button functionality will be
completed by the client at a later date, which means the button will simply be an endpoint to
transfer information of the clients choosing later, but it must be accessible and function as the

client expects.

We will have the client test out the button and ensure that the endpoint produces the desired

output, if any output is desired.

Target List Editor

This user test will be more in depth than the others. Rather than just visually inspecting
elements, the client will have to interact with the target list editor and ensure that the proper
output is provided once editing the list is complete. The actual target list is on the front page,
and the editor is behind security on a separate page. This means that the client will have to
make changes on one page, then inspect the output of the changes on another page and check

for accuracy in the changes made to the information.

The target list editor will also be an endpoint to transfer the changes the any necessary
locations off site. We will not be implementing the transfer of information off site. That will
be left for the client. This means that the target list endpoint must produce the output needed

by the client to make the necessary implementation later.

Testing will continue and be checked for accuracy for the remainder of the project. Aslong as
any discrepancies in information exist, we will be prepared to fix them as long as testing

continues.

Project Timeline

29

Throughout the course of our project, we created many iterations of a project schedule that we tried

our hardest to follow. Below you can see the latest version of our projects Gantt chart.

Schedule For Capstone Project

Dates ‘Fa[l Semester ‘January February March April

Completed Milestones

Understand Project Description
Technical Feasibility Document

Requirements Elicitation

Initial Proof of Concept
Integrate Django, Rest, & Ajax
Deployment Research _

Upcoming Milestones

Deploy Django App
Script Creation
Deploy Script
Graphs & Images
Nice-to-Haves

User Testing /=

Ul/UXRefinement

Some major milestones that are outlined above are:

- Technical Feasibility document

- Initial Proof of concepts & prototypes
- Deployment of application

- Testing of the application

The major milestones discussed above were completed in a team-oriented way. For each milestone in
our project each member of our team completed various pieces of the work that needed to be done.
This method of breaking up the work seemed to work quite well, and we were able to complete many
milestones following this structure

Future Work

Although our team completed all the major requirements that were laid out by our sponsor, we still
have ideas for future work and features that could be implemented in the 2.0 version of the Frost

Monitor System. Some of the future work & features we have thought about implementing are:

- Algorithms for predicting weather patterns
- Bypredicting weather patterns, our application may be able to more accurately display

the chances of bad weather occurring around FRoST.

- Send out alerts when weather exceeds some threshold
- Sending an alert when certain weather thresholds are met would allow admins of
FRoST to quickly get an understanding that FRoST may be in danger.
- Provide an interface to actually control telescope
- Byimplementing a way to actually control the telescope using the Frost Monitor
System, our application would then contain all necessary features for FRoST
researchers to use.

The features discussed above would add even more functionality to our application, and would help

our clients even more.

Conclusion

As ateam, we feel that this project has great potential to very useful to our client. It will enable
them to more effectively use their telescope to scan possible impactors and learn about the
NEOs, and thus making a large impact in their productivity.

This project consists of three main parts: the Nuthatch machine, the Django Rest framework,
and the FRoST Monitor web page itself. This makes the project as simple as possible which
makes it easy to design and implement. In the end, our client will be maintaining it, so having a
simple design is best for them and make them happy about having this product.

31

