EvaluRate

The Hack Jacks

Dylan Grayson
Conner Swann
Brandon Paree
Brian Saganey

Desigh Document

March 25, 2016
V1.1

Table of Contents

Introduction

Architecture Overview
Distributed Data Protocol (DDP)
Case for MongoDB

Architecture Diagram

Module and Interface Descriptions

Evaluation Enqgine

Unit Management

Data Digestion

User Management

Notifications
Database

Implementation Plan

Summary
Work

Introduction

In today’s workplace, it's almost impossible to avoid working with a group
of people on a project. In nearly every organization from the university to
corporate America, teams of people are organized to get large tasks done. For
the most part, the inner workings of how teams operate have been optimized by
a multitude of modern software applications (ex. Skype for communication, Trello
for task management, etc.). However, there is one area that’s remained virtually
untouched, and that is the area of performance evaluation.

For the most part, teams are a black box, a project goes in and the result
comes out. The only way of determining how well a team is performing, if you are
not part of the team, is to compare the results to the original requirements and
see how well they did. This is not optimal, as a weak team member can make or
break a project, potentially wasting the time of the entire team if the end-result
doesn’t live up. In order to prevent this from happening, managers require more
granular control over how performance is reported and team interactions are
monitored. However, if they aren’t physically next to their subordinates all day
they aren’t capable of seeing what goes on between team members on a regular
basis. Additionally, when directly asked how one feels about a project, the
common inclination is to not speak up about issues in order not to anger
management or “rock the boat.”

Over the years, industry and academia have attempted to solve this
problem through the use of regularly issued anonymous peer evaluations. Peer
evaluations are a tool often used as an early indicator of a project’s success and
allow a manager to intervene if it appears that there is an underperforming team
member. Additionally, the anonymous nature of the evaluations encourage
members to respond honestly to questions about the project. More often than
not, these evaluations are completed on paper or via email, requiring the issuer

to spend an inordinate amount of time consolidating all the data and analyzing it

so they can make informed decisions. There are several applications that
currently exist in an attempt to solve this problem, however there are some
issues with the current offerings. All existing solutions rigidly focus on academia
and are designed explicitly for the classroom, ignoring the private sector.
Additionally, they are not the easiest applications to use and put form far behind
function.
Ideally, there would be a software application that would provide structure
to the evaluation process. This application would:
e take the time out of creating, issuing, and tabulating the results from peer
evaluations.
e make it easy to take the data from evaluations and make meaningful
inferences about the team from that data.
e be a central location to visualize the data from these evaluations over
time.

e be not only functional, but visually pleasing and nice to use.

EvaluRate is a scalable and customizable web application created for the
purpose of issuing and managing peer evaluations -- eliminating the need for
combing through and manually computing results from surveys. Within
EvaluRate, managers are able to model the structure of their organization by
separating users into a hierarchy of divisions. From there, projects are created to
model real world projects in the system, and teams are assigned to the project.
Managers are then able to pick from a series of predefined evaluation templates,
and schedule them to be released at a time when it is meaningful to collect
feedback from team members.

Members of these teams are informed that they have an outstanding
evaluation to complete by a variety of methods such as email, text message, or

in-app notification. The link that is sent via one of these methods can be followed

to take the user directly to the evaluation, quickly fill it out, and get back to what
they were doing.

At this time the managers are able to see the completion progress of a
given evaluation, and once completed, generate meaningful data that can be
used in a variety of ways. In addition to providing in-app analytical ability,
EvaluRate also provides the ability to export raw evaluation data in a variety of

formats for use in other applications or reports.

Architecture Overview

Since EvaluRate is web application, the underlying architecture for the
application is handled mostly with Meteor JavaScript web framework. This
framework provides all the code necessary to create a responsive and modern
web application. Meteor accomplishes this by running a Node JavaScript server
that interfaces with a MongoDB database, and serves a robust client-side
JavaScript application. This client-side application communicates with the server

over HTTP and a custom protocol known as DDP.

2.1. Distributed Data Protocol (DDP)

The Distributed Data Protocol uses websockets to maintain a
persistent connection between client and server. This means that new
data being added to the database will be automatically updated on the
client without the client needing to poll for updates. DDP facilitates
constant updates so the clients will always have up-to-date data at any

given moment.

2.2. Case for MongoDB

EvaluRate leverages MongoDB to enable the application to store a

variety of custom user-generated data, primarily the evaluations

2.3.

themselves. In addition, the internal implementation and database objects
have been carefully considered in order to provide for a large number of
client configurations. For this, MongoDB is incredibly useful due to its

general flexibility in how data can be stored within it.

Architecture Diagram

The diagram in Figure 2.1 shows the modified client-server
architecture of the application as it exists with Meteor. The ‘App
Microservices’ section refers to all the code being written for EvaluRate on
the server, while all other components on the server are defined by
Meteor. Similarly, the ‘App Components and Logic’ section on the client
side refers to all of the business logic for EvaluRate, and the ‘Handlebars,
Blaze, or React’ section refers to the graphical user interface for
EvaluRate. The other components on the client are also defined by

Meteor.

EvaluRate

SERVER
Meteor Server H—..—mz._.
(NodeJS Runtime) \ /
ﬁ Handlebars, Blaze, or React _
REST Calls, documents, etc
HTTP — — — — — — — — — — — B HTTP
App Components and Logic
mxﬁmqsm_ REST TP LR » App Microservices Subscribe to data in Mongo
ervices ——— [
- -
-~ e T
Send new data to
Mongo DDP . N m.
- — —» %2 2 D
~ Updatefinsert w % 53
. succeeded w @, ﬁﬂ gva
~ ~ 5o 2% go?
ST ® _...M\w 2T o 8
Send updates to subscribed ,_wwl 0 F
data on insert and update o, mw o
Local Storage

MongoDB / \ J \

MiniMongo

Figure 2.1 - Architecture Diagram

Module and Interface Descriptions

EvaluRate is split up into several logical modules to allow for ease of
understanding and code organization. These modules are merely logical
separations in the code based on their functionality, but serve to better explain
how EvaluRate works. The modules are as follows:

e Evaluation Engine
o The core logic of the application, handles dynamic creation of
evaluations from templates, interface to complete an evaluation,
and storage of results.
e Unit Management Module
o Alllogic dedicated to creating, disbanding, or modifying units and
their permissions.
e Data Digestion
o All logic pertaining to displaying/manipulating the data resulting
from completed evaluations.
e User Management Module
o All logic dedicated to adding, deleting, or modifying users
e Notification Module
o Alllogic dedicated to alerting a user of internal system events
e Database

o All Schemas and models for reliable storage of system data

3.1. Evaluation Engine

The evaluation engine is a major module within EvaluRate. It is the system
that facilitates the steps of the evaluation process from form creation to data
collection, it allows evaluations to be created, maintained, delivered and taken.
Internally, the evaluation engine consists of a few main components, each with

their own unique challenges:

e Dynamic Form Builder
e Form Generation from a Schema

e Custom Input Types

3.2.1. Dynamic Form Builder

One of the biggest challenges in creating an application like EvaluRate is
forms, specifically custom forms. While it is possible to have a limited
number of evaluations that group admins can choose from to give to their
members, we believe that giving users the option to build completely
custom forms is a much better route. However, we do plan to have a
system in place where users are able to use and edit predefined

evaluations.

To create dynamic forms, we will be using a Meteor package called
Autoform which is used to generate forms using predefined schemas. The
behind the scenes of the form builder works as follows:
e With the use of Subdocument arrays users will be able to create
forms of any size or type.
e To actually use these forms later, the data submitted into our
collection must be formatted as another a schema itself, hence the

use of Subdocuments.

Users are able to add and remove fields, choose types for each field, add

names for each field and do other customization.

3.1.2. Form Generation from a Dynamic Schema

Creating custom forms is one issue to tackle, but displaying them
and saving them to a Mongo collection is another issue. Just like with the
Dynamic Form Builder, the Meteor package Autoform will be heavily used.
As mentioned before, Autoform generates forms from a predefined
schema. Here is how it all works:

e Because of the way we structure data using the Form Builder we
are easily able to generate our custom evaluations by just plugging
the schema into Autoform.

e The correct schema is pulled from the Evaluations collection simply
by using an ID.

e When forms are submitted they are placed into an

semi-unstructured collection for easy retrieval later.

The user will simply be presented with an evaluation form exactly as it was

as it was designed by the Unit Admin.

3.1.3. Custom Input Types

Generally speaking there are a limited number of input types that
can be used in a form, these are things like:
- Strings
- Numbers
- Booleans

- Selects

Even though any sort of evaluations could be done using these
input types there custom inputs that can be built to make taking the
evaluations much easier. Custom inputs are another functionality of
Autoform that can be used to our advantage. A lot of evaluations are done
by handing out a specific number of points to a specific number of
members in a group. A custom input can be made that automatically
generates sliders depending on the members in a group and locks the

group to a specific amount of points to give out.

10

3.2. Unit Management

The unit management system encompases every way that the user
interacts with the unit, the basic nesting data structure that may contain either
users or units. This system can be broken into 4 main parts:

e Unit creation
e Member management
e Permission settings

e Unit division system

3.2.2. Unit Creation

Users can manually create top level root units at any time, or
subunits inside units they have permissions for, by providing a name for

the new unit.

3.2.3. Member Management

Admin users can invite users into units with 3 different methods:
e Email invitation
e Distributed key
e In-app invitation
o Uses the notification system to send invites
Once users are added to a unit, the admin of that unit can manually

move users into subunits of that unit.

3.2.4. Permission Settings

The permissions are specific to each unit, where each unit contains
two permissions objects, one for admins and one for parent admins.

These permissions objects consist of three boolean values:

11

canView
o Without view permissions, no other permissions matter, only
the name of the unit can be seen.
canEvaluate
o Users with this permission can administer evaluations to
members in a unit.
canDivide
o This allows users to create units within this unit.
canAlterPerms
o Users with this permission can change the permissions for
this unit.
canAlterMembers
o Users with this permission can invite and remove users from

the members list of this unit.

Unit Division System

This is a method for users to create subunits inside of units of

which they are admin. It exists for the purpose of dividing members of one

unit into subunits. This system combines the functionality of unit creation,

member management, and permission settings into a system to make unit

division easier.

12

3.3. Data Digestion

The administrator of an evaluation and/or the person who has permission
of that evaluation can get statistical information and graphical depiction of peer
evaluation results. This module will use responses that have been submitted by
users to display the data in as many relevant ways as possible.

e Download Information

e Data Visualization

3.3.2. Download Information

The administrator or a person with permission to the evaluation will be
able to download statistical information and results from surveys to their
desire file form:

o XML

e CSV

e Others

3.3.3. Data Visualization

The administrators and person with permission to the evaluation will be
able to view the resulting data in a variety of formats:

e Bar Graph

e Pie Chart

e Line Graph

13

3.4. User Management

The User Management Module deals with a lot of the functionality that
users come to expect from any modern web app when it comes to their own
personal accounts. Luckily, Meteor has core functionality that deals with user
accounts. There are also a large number of packages that expand this

functionality.

The following is a list of items that will be implemented on the back of of the core

accounts packages.

Account Creation

o Email/Password
o CAS
o GMail
e Login
e |ogout
e Password Recovery
e Add and Edit Account Details

e Delete/Disable Account

The first four pages are available to users that are not logged in, and the last two

options are only available to those that are already authenticated.

14

3.5. Notifications

The administrator and persons with permission will have the ability to
create events. Also the notification will be broken down into three types of
notification: text, email, and in app notification.

e Create Events
e Notification

o Text

o Email

o In App Notification

3.5.2. Create Events

Administrator and persons with permission to the evaluations will
be able to create events that will inform on new events, updates on

events, and alerts subunits on due dates.

3.5.3. Notification

Notification to the units will be control by the administrators and
people with permissions to the units. There will be three type of notification
that the unite managers can push information and alerts to their units:

o Text
o Signing up for text notification is an option. But if users
decide to receive text notification, notification will be push to
users mobile phone at user own rates.
e In App Notification
o Administrators and people with permission access will be

able to push notification to all people in a unit.

15

e Email
o Email notification will be automatically push to users’ email
services; users’ email will be the main source of notification
because users will have to signup with a email before using

Evaluate.

16

3.6. Database

Since Meteor uses MongoDB for it's database, and MongoDB doesn’t

employ strict schemas, we are using the SimpleSchema2 package to create strict

canCreateSubunits:
boolean }

schemas.
3.6.2. Unit Schema

Field Name Field Type Field Description

_id String Unique ID generated by Meteor

owner Userld The creator user’s ID by default

name String Name for unit set by creator

children [Unitld] List of unit IDs that are immediate
children

admins [Userld] List of user IDs that act as admin to
unit

members [Userld] List if user IDs for all members of unit

evaluations [Evaluationid] List of active or scheduled evaluation
IDs

adminPerm { canEvaluate: boolean, Permissions for admins of this unit

parentAdminPerm

{ canView: boolean,
canEvaluate: boolean,
canCreateSubunits:
boolean }

Permissions for admins of all parent
units

17

3.6.3. Unit Schema
Field Name Field Type Field Description
_id String Unique ID generaged by Meteor
owner Userld The creator user’s ID by default
unitld [Unitld] List of Unit IDs the project is
attached to
openDate Date When the project starts
closeDate Date When the project closes
3.6.4. Evaluation Schema
Field Name Field Type Field Description
_id String Unique ID generated by Meteor
templateld EvalTemplateld ID of corresponding evaluation
template
owner Userld The creator user’s ID by default
projectld Projectld project ID that this evaluation acts
on
dueDate Date due date of the evaluation

18

3.6.5. Evaluation Template Schema
Field Name Field Type Field Description
_id String Unique ID generated by Meteor
title String User defined title
owner Userld The creator user’s ID by default
fields [Object] A list of question objects which
construct the form later
3.6.6. Response Schema
Field Name Field Type Field Description
_id String Unique ID generated by Meteor
userld Userld The ID of the user that completed
the evaluation
templateld EvalTemplateld The ID of the evaluation template
that identifies the questions for this
response
evalld Evaluationid The ID of the evaluation instance
that the user responded to
data Object The data collected from the

evaluation

19

4. Implementation Plan

For the most part the implementation plan has been largely centered around the
User Interface design. Once the user interface had a good design, the rest of the
functional work started to fall into place. An actual plan would be very hard to predict, as
well as actually stick to. Implementation is done in a Kanban style fashion, where we
prioritize which issues need to be done at a certain period of time and reevaluate that
constantly. So far we have realized more than a few times that we want to implement
one part of a module, but realize that we actually need to implement another piece of a

module first to make workflow more efficient.

week

Database

Ul Design

Evaluation Eng

Unit Manage

User Interface

Usability Test

4.1. Summary

The implementation plan starts with getting a solid schema for the
database, as well as a good picture of what the user interface will look like.

These two things will drive development of the rest of the application by giving a

20

solid foundation to both the server side and the client side of the application.
Usability testing is outlined to continue through the majority of development,

which will hopefully allow us to catch problems early.

4.2. Work

With Meteor it is hard to describe actual roles in the development of our
application because the client side contains much more logic than a standard

web framework. A large portion of code in Meteor runs on both client and server.

Client - Templates, Interface logic
o Brian Saganey
o Brandon Paree
Server - Units management, Evaluation Engine
o Conner Swann
o Dylan Grayson
Both - Mongo Collections, Routing
o Dylan Grayson
o Brandon Paree
Testing

o Everyone

21

