Requirements Analysis

The Disease Outbreaks Team
Abdulaziz Alhawas
JP Labadie
Jordan Marshall
Luis Valenzuela

Table of Contents
Table of Contents

Introduction

Problem and Solution Statement

Functional Requirements

Environmental Requirements

Non-Functional Requirements

Potential Risks

Project Plan
Ul Design and XML Generation

Communication with NASP

Checking on Job Progress

Result Visualization

Timeline

Appendix

Introduction

The purpose of this document is to define the Business Requirements
for the Disease Outbreaks Capstone Project sponsored by TGen North. The
intended audience for this document includes all associates of TGen North,
as well as the capstone professors overseeing these projects. Components of
the UI solution include: problem and solution statements, functional
requirements, environmental requirements, non-functional requirements,
potential risks, and the group’s project plan.

This draft is intended to be a fluid and flexible document that will
change and evolve throughout the team’s development and design process.
This work will be completed in multiple sprints and releases. The document
will help outline the main features and abilities that the interface will provide
to its end users.

The background for these needs stems from an accessibility gap of the
end users at TGen North, these scientists need a way to easily communicate
with their computer cluster without having to go through the command-line.
Because of the unfamiliarity of the command-line that non-programmers
have, it can be difficult for these users to run a task that is fully to their
specifications and liking. A more graphical user interface is a great solution
that can increase functionality, while also reducing confusion when running
through these command-line tasks.

The objective is to create a stand-alone application that will bridge all
of the gaps that the current command-line tool generates. The application
will run through a “wizard” like interface to make sure a user can send off a
task easily and will include separate tabs along the interface to reduce
cluttering and confusability. It will only show options that are completely
necessary, while at the same time hiding more advanced and tedious options
that do not need to be muddled through. This tool will basically abstract all
of the command-line tool functionality into a more user friendly
environment, allowing the end users ease of use and peace of mind.

Problem and Solution Statement

The sponsor for this project is Darrin Lemmer at TGen North. The
strategic plan for TGen North is focused on diagnostic, analytic, forensic and
epidemiologic research related to pathogens important to medicine, public
health and biodefense. The research capabilities at TGen include a variety of
DNA sequencing and PCR-based analyses, forensic analysis of outbreak and
bio threat incidents, as well as advanced bioinformatics and computing
infrastructure.

The Northern Arizona SNP Pipeline is the primary tool used by the
disease outbreak division at TGen, the sponsor, to investigate fungal and

bacterial genomes for the purpose of tracking disease outbreaks. The
pipeline is optimized to run on a computing cluster, which can be remotely
accessed. Currently, users interact with a command-line program, which
emulates a ‘wizard’ style interface, asking the user for the locations of
various files, parameters that need to be included with the data, as well as
other options to include while running the process. This command-line
program then generates a formatted XML document, after which is passed
on to the computing cluster. The NASP tool uses the information in the XML
to run the process.

This command-line tool, while effective, can be daunting and
unforgiving for a non-programmer to use. Right now there is no way to clear
an entry, adjust an entered parameter, or fix a mistake without resetting the
whole command-line tool. The command-line tool does not allow the input of
custom options, unless the XML document is directly manipulated, this is not
feasible for users unfamiliar with XML and its structure. The users seek a
way to pass in their data to the computer cluster, run NASP, and receive
their output without having to go through the command-line or directly into
the XML document. The primary objective of this project is to create a more
user friendly graphical interface in which users of the current command-line
tool will have more flexibility and increased ease of use.

The main focus for the GUI is to replace the command-line tool
entirely, providing a robust and modular interface which improves the user
experience. This goal is well within our abilities, as the command line tool is
sufficiently abstracted from the NASP job process. Because the NASP
pipeline is dependent solely on the XML, the GUI will be completely
independent of the other technologies used in NASP. The core requirement
of the project is then to provide a user interface which can generate this XML
and pass it to NASP pipeline to begin a job. Features of the project will build
upon this, including providing a visual representation of job completion by
interacting with the job manager, and visualizing the phylogenetic trees
which result from the job once it has finished.

Potentially, this GUI could set the standard for genetic SNP’s
phylogeny. Since command-line tools are the current route to manage the
NASP tool currently, a graphical user interface will provide massive amounts
of extra usability to users that are not only uncomfortable with the
command-line, but also unfamiliar with the generated output that will be
passed to the cluster.

There were no other avenues to explore for this project, because the
sponsor specifically wants a graphical user interface, as this seems to be the
best and most practical solution.

Functional Requirements

The final implementation must be able to fully replace the
command-line tool that is currently used to interact with NASP, while
leveraging the advantages offered by a more advanced interface. To this
end, it must provide an intuitive Graphical User Interface (GUI) which allows
users to build a new job for the NASP tool. This GUI must also allow this job
to be sent to a number of remote computing centers (currently ASPEN and
MONSOON), or run locally.

To begin the process of creating a job in the new tool, users must be
able to specify where output files will be written. Users must be able to
provide either local or remote reference FASTA files. Users must be able to
toggle the option to ignore duplicated regions found in the reference files.
The user must be able to select the job management system that will be
used, as well as the option to run without a job manager. Likewise, the tool
must support interactions with the PBS/Torque, SLURM, and SGE job
management systems. If a job management system is chosen, the system
must allow users to specify a queue or partition to be used for all jobs, or
use the default queue. The system should also allow users to add additional
arguments to the job request.

The user should also be able to supply local or remote FASTA files from
external genomes. If remote external genome FASTA's are supplied, the
user should be able to specify advanced settings for the NUCmer tool.

The user should be able to supply local or remote read files if they
wish. The user should be able to select which alignment tools they would like
to use, including BWA, Novoalign, and SNAP. Alternatively, users should be
able to provide pre-aligned files such as BAM. Depending on the choice of
alignment tools and files specified, users should be able to choose only
related additional options.

If the BWA aligner was selected, users should be able to select options
such as running the BWA samp/se tool, and the BWA mem tool.
Furthermore, they should be allowed to define any advanced settings related
to the BWA tool and optional tools.

Users should also be allowed to run the Bowtie2 tool. Users should
likewise be able to set advanced settings for the Bowtie2 tool.

If users chose to include Novalign as an aligner step, they should be
allowed to enable and define extra Novalign settings. For instance, users
should be able to specify an alternate Novalign version from the default.
Users should be able to supply additional arguments. Users should also be
able to Novalign’s runtime settings, such as defining queue and partition,
maximum memory allotment, maximum CPU allotment, and maximum
runtime allotment.

If users choose to run SNAP, they should be allowed to specify local or
remote prealigned SAM or BAM files to be included. Users must also select
one or more SNP caller functions, GATK, SolSNP, VarScan, and SAMtools.
Users must also be allowed to provide local or remote VCEF files if they are
available.

If users elect to include the GATK SNP caller function, they should be
allowed to define advanced options for the tool. If users elect to define
advanced options for GATK, they should be able to: choose an alternate
version of GATK, define the queue or partition for GATK to run on, define the
maximum memory allocation for GATK, define the maximum CPUs allotted
to GATK, define a maximum runtime to GATK, and define additional
arguments for the GATK runtime.

Users should also be allowed to define how NASP will filter results
based on coverage. Users should be able to select a minimum coverage
threshold, including zero (no coverage filtering). In addition, Users should be
able to filter based on the proportion of reads that match the call made by
the SNP caller. Users should be to enable this filtering, define the minimum
acceptable proportion.

Users should be able to define advanced parameters for the
MatrixGenerator processing step. These should include: define an alternative
MatrixGenerator version, pass additional arguments to the MatrixGenerator,
define the queue or partition for the MatrixGenerator to run on, define the
maximum memory to be used in processing, define the maximum CPU count
to be used in processing, and define the maximum run time of the job in
hours.

Finally, the user should be able to decide if the generated matrix
should include all reference positions, or if the generated matrix should
mask low-quality calls. Based on the user’s settings, as defined above, the
tool should then create an XML document which conforms to the schema
defined by TGen North. This XML is the interface used by the NASP tool, and
completely defines the job and tasks desired by the user.

The tool must also be able to connect to the remote computing centers
and start the job, using the XML generated and providing it to the NASP
pipeline through the job managers selected. Currently, the tool must support
interactions with the job managers PBS/Torque, SLURM, and SGE. The tool
must also provide an interface for the user to visually track the progress of
started jobs via said job managers, and to retrieve the files generated by the
job upon completion. Finally, the tool should provide the user with
visualizations of the generated matrix, including diff-like side-by-side views
of SNPs, and a phylogenetic tree. Additional features may expand upon
these visualizations, and could allow users to draw upon and annotate trees,
collect individual sample information, and additional filtering.

The tool should also be ‘modular’ where possible, but especially in
terms of the visualizations, providing users a straight-forward method for
expanding or changing functionality should the need arise after the project is
completed.

Environmental Requirements

The NASP pipeline runs in a computing cluster where users interact
with it using a command-line program. The command-line program asks the
user series of questions to locate various files and options to include when
running the process. After gathering all the parameters it needs, the
program generates a formatted XML document which is passed to the
computing cluster in order to run the process.

Our GUI will replace the command-line tool entirely, providing a robust
and modular interface which improves the user experience. Because the
NASP pipeline is dependent solely on the XML, our GUI is completely
independent of the other technologies used in NASP. The core requirement
of the project is then to provide a user interface which can generate this XML
and pass it to NASP pipeline to begin a job. Features of the project will build
upon this, including providing a visual representation of job completion by
interacting with the job manager, and visualizing the phylogenetic trees
which result from the job once it has finished.

Since our GUI is independent of any technology that NASP use, we
have complete freedom to choose any programming language we'd like. We
decided to use Java with JavaFX as the GUI framework. We also intend to
use D3.js for visualizations as an additional feature.

These technologies fulfill our requirements and will seamlessly
integrate with our particular environment. Obviously, a Java-based
application will run on any major operating system. Furthermore, since the
NASP tool is abstracted behind its XML input, no difficulties will be
encountered in interfacing with it. It is well within the capabilities of Java to
generate XML and interact with a remote machine and its process managers.
Serving the visualizations generated by any D3.js scripts is likewise
well-handled by our chosen technologies. JavaFX is designed for both local
GUI implementation and serving rich web-content, and thus can serve the
content generated by D3.js.

Non-Functional Requirements

The GUI shall have a simple design that should not require users to
undergo additional training. The GUI desigh needs to look similar to TGen's
existing UI programs, and should follow their design patterns. Results must
be processed and displayed to the GUI to allow users to visualize data in an
organized way.

Additional tools should be easily integrated into the solution. The GUI
needs to be implemented in a manner which produces reliable and correct
XML documents. The GUI shall also provide a visual representation of NASP
job completion status. Finally, the design shall be documented using TGen’'s
design templates.

Potential Risks

This project will make use of five technologies that serve specific
purposes in the creation of the interface and the interaction with the
command line tool. We will be using Java, JavaFX, and D3.js. There is a risk
involved with using each of these tools.

We could very well have issues producing the XML file using Java. This
is one of the most important aspects of the project, since TGen’s tool relies
on this file to run. Another risk associated with Java would be correctness.
The Java code that we write might be able to produce the file, but the file
format or file data may not be correct. This would lead to incorrect results
from the tool and would therefore make anything that those results are used
for also incorrect. The output must be correct to ensure that it does not have
a negative effect on other processes that rely on it. The final risk associated
with Java is the communication with the NASP tool which lives on a separate
computer. Our program has to be able to send the file it produces to NASP
which then runs based on the contents of the XML. This communication is
also a vital part of the tool. Producing a correct XML file is only half of the
work, sending that file to NASP is the other just as important part. The
likelihood of these problems occurring however are slim. We are confident
that we can create a program that reads an interface’s contents, creates a
correct XML given that information, and communicates with a server that
NASP lives on.

D3.js is the tool that we are using to create a visualization of the
results produced by the NASP tool. The script that we write should be able to
create an accurate visualization in the form of a tree. The biggest risks
associated with this tool would be the accuracy of the visualization and being
able to have it loosely coupled with the main program. The visualization will
be done within the tool but is an aspect that should be easy to modify
without affecting the rest of the tool. Depending on how the programming
goes this may or may not be an issue but loose coupling is something that
we want to accomplish.

Using JavaFX as a tool to create the interface is something that
we consider to be relatively low risk. The interface will simply present the
user with some questions and options which the Java code will then translate
into XML. We are confident that we can create an interface that will be able
to accomplish this. There is a chance that we may not include everything
that we need in the interface but after having multiple iterations of the
interface the chances of that occurring are not likely.

Project Plan

Ul Design and XML Generation

In the following weeks, after having a better understanding and grasp
on what exactly the sponsor wants, we will begin creating some initial
interface designs based on some of the tools that TGen is currently using.
We want the tool feel familiar to the users in terms of their interactions with
it. While we make iterations of the interface we want to also be working on
beginning of the writing the code that will generate the XML given any input
by the user. Since the changes in the interfaces design for the most part will
not have an impact on how the code interacts with the interface we can work
on both simultaneously.

Communication with NASP

Once we have an interface that correctly generates the XML file we
want to begin working on communicating with the servers that NASP lives
on. Establishing that communication will then allow us to be able to actually
send jobs to the server in the form of the XML file we generated. At this
point we expect to still be tweaking the interface design as well. We might
have one person working on that and three people working on getting
communication working. We could have someone start working on the
visualization module but we want to have the core functionality of the tool
done before we move on to other aspects of the project.

Checking on Job Progress

With communication with the servers functioning this is the next
module that we want to get working. TGen would like to be able to check on
the completion of any given job. This will also be part of the tool. Given a
job ID we plan on being able to ask the server for a status update on any
given job that is currently being handled.

Result Visualization

After NASP completes a job, the user will be able to download the file.
Using this file the tool will be able to create a visualization in the form of a
tree. The goal is to have the visualization be part of the tool. This means
that the tool itself should be able to generate that visualization and display
it.

Timeline

The following is a rough timeline of the milestones that we currently.
We expect to adjust the timeline as we progress through the project.
Specific tasks that need to be accomplished as part of every milestone will
also be added.

>

Interface Design and Implementation

2016

11/20/2015
XML File Generation Communication with NASP Checking Job Progress - Result Visualization
> 12/20/2015 | 1/20/2016 > 2/20/2016 “7 3/20/2016
2015 Dec 20: Feb
A
Today
b &S
AMNTT: - 2015 2016
©age -4 | ; | | ‘ ‘
e Begindote | Enddate |70 Decetmber January Fehruary March Aprl My
@ Requirements Analysis 11/5/15 12112113
© Visual Interface Prototyping 11/5/15 11721715 (E—
© Visual Interface Implementa... 11/18/15 12/8/15 | I——
@ XML Output Implementation 12/2/15 12/18/15 (——
© Job Manager Communicati.. 1/16/16 2/16/16 ——
@ Job Progress Visualization 2/5/16 3/7/16 e ——
© Result Retrieval 2/29/16 3/30/16
@ Result Visualizations 3/21716 4/15/16 =]

Appendix

The NASP pipeline dataflow:

GUI Tool Use Case Model:

B Interface Interaction

O Edit Interface Fields

H

«include» .~

.
.

<" «extends
©Create New Task ™z oo _____ © Reset Input Fields

«include= “~

"3 Generate and Send XML

{Task is Complete}
% < Download Result

User k

/|

s xextends

© Display Visualization

© Check Task Completion

