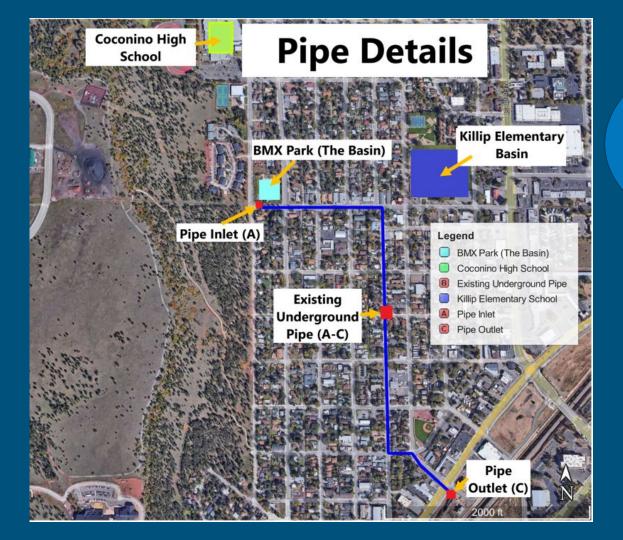

West Street Wash Redesign/Rehabilitation -Final Presentation

Northern Arizona University-Department of Engineering, CENE 486C

Prepared by: Omar Shinnar, Kolten Ketchum, & Mikael Purne

Client/TA: Edward Schenk GI: Dr. Heiderscheidt.

4/28/2023



Project Location: Flagstaff, AZ

- Current infrastructure is not capable of handling 25 year recurrence flows.
- Emergency 100 year storm events cause intense flooding in the area.

Project Goal: Increase stormwater capacity and rehabilitate West St Wash drainage system.

Figure 1: Project Area location

Current stormwater system is underground from "The Basin" BMX park to Route 66 beneath West St.

Each neighborhood block is occupied by business and homes. Resulting in Very little space to work with for a solution

Figure 2: Stormwater drainage system

Overland Flow entering "The Basin" BMX Park

Colonina

0

388 ft

N

EFF.

Analysis of existing infrastructure

CMP = Corrugated Metal Pipe

RCP = Reinforced Concrete Pipe

RGRCP = Rubber Gasket Reinforced Concrete Pipe

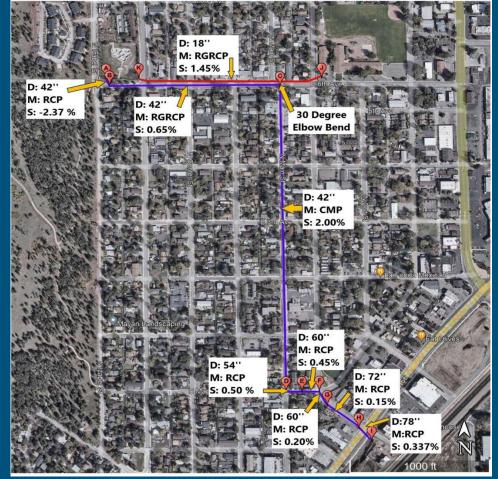


Figure 5: Pipe Flow Map

Time of Concentration

Time of concentration by hand= 36 minutes Rational Method: TOC = 36.5 min

COF Stormwater Management (2009): Used to determine rainfall intensities

0

West Street Wash Legend Point of Concentration Longest Path for Water Flow Watershed Switzer Mesi Flagsta F Forest Av 0.15 0 6 Miles

Figure 4: Watershed, Point of Concentration & Longest Flow Path

Hydrologic Analysis

Utilized Google Earth Pro to:

- Calculate watershed area = 1678.85 Acres.
- Measure longest flow path = 13471 ft
- Parce out watershed to use rational method.

Table 1: ADOT Rational Method Tool Results				
Parameter	25 - year	100 - year		
Discharge Q (cfs)	1222.4	2073.7		
Runoff Coefficient C	0.31	0.36		
Rainfall intensity I, (in/hr)	2.35	3.43		
Subbasin Total Area A (acres)	1678.85			
Computed TOC Tc, (min)	42.2	36.5		
Applied TOC Tc, (min)	42.2	36.5		

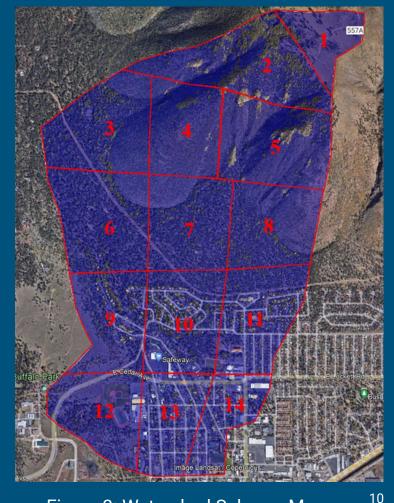


Figure 3: Watershed Subarea Map

Alternative Designs

Designs considered:

- Surface Retention or Detention basin
- Underground Retention system
- New pipe exiting Killip Elementary basin
- Combining Underground retention with a new pipe at Killip Elementary

Drivers of Design:

- 2,074 CFS = 4,542,060 CF/(36.5 min Storm)
- Monumental volume of water.
- Minimal space to work with.
- Keeping future improvements in mind.

Surface Detention Basin

Design Concerns:

- Mass excavation
- All water arriving at Killip basin needs to be piped to the BMX park, then to surface detention
- Proposed area for surface basin is at higher elevation than the BMX park

Footprint: 280,000 SF Depth: 16 FT Approximate cost: **\$6.9 million**

Figure 6: Design Alternative 1

Underground Retention Tank Beneath BMX Park

Design Concerns:

- Custom concrete vault system is expensive
- All water at the Killip Elementary basin needs to be piped into the BMX Park
- Roadways of relatively high traffic would need to be demolished and replaced

Figure 7: Design Alternative 2 Footprint

Footprint: 140,000 SF Depth: 37 FT Approximate cost: **\$33 million**

New Storm Pipe from BMX to Killip Basin & New Pipe Exiting Basin

Design Concerns:

- All water arriving at BMX Park needs to be piped to Killip
- Equipment access
- Overhead power lines

Pipe would overwhelm current storm system downstream. Diameter: **144**"(CulvertMaster) Flow Capacity: 1895 CFS Approximate Cost: **\$3.1 Million**

Killip Elementary basin

Figure 8 and Figure 9: Design Alternative 3

New Pipe and Underground Tank

Design Concerns:

- Pipe between Killip and BMX park needs to be capped
- Tank footprint maximizes BMX park
- Overhead power lines over new pipe
- Equipment access

Underground Retention: Footprint: 90,000 SF Depth: 15 FT

Proposed New Pipe: Diameter: 54" CMP Flow Capacity: 250 CFS (CulvertMaster)

16

Approximate cost: \$10.5 million

Design Analysis

Criteria determined by project constraints

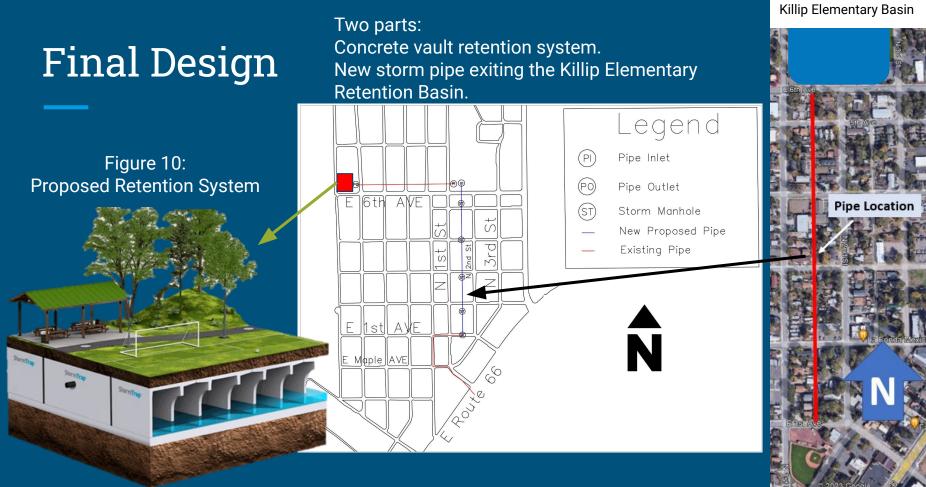
Table 4: Criteria

Criteria		Consideration
Feasibility	35%	Difficulty of design implementation.
Environmental Impacts	15%	Weighing positive and negative environmental impacts.
Social Impacts	15%	Public approval during and after construction.
Construction Cost	20%	Cost of design implementation.
Operation & Maintenance	15%	Cost of operation and maintenance (O & M)

Criteria Scoring

Table 5: Scoring for Decision Matrix

SCORE	Feasibility	Environmental Impacts	Social Impacts	Construction Cost	Operation & Maintenance
3	Easy to build	Positive environmental impacts	Positive social impacts	Design < \$7.5 million	O & M cost should be minimal
2	Reasonable to build	Positive and negative environmental impacts	Positive and negative social impacts	\$7.5 million < Design < \$15 million	O & M cost is reasonable
1	Very difficult to build	Negative environmental impacts	Negative social impacts	\$15 million < Design	O & M cost is high


Selection of Best Alternative

Design alternatives were assigned scores based on the criteria scoring system outlined on slide 17.

New Pipe + Underground Tank design scored highest.

	Table 6: Decision Matrix									
Alternative	Weight (%) Detention				Underground Retention		New pipe @ Killip Elem		New Pipe + Underground Tank	
Design		SCORE (X /3)	Score Weighted	SCORE (X /3)	Score Weighted	SCORE (X /3)	Score Weighted	SCORE (X /3)	Score Weighted	
Feasibility	35%	2	0.70	1	0.35	1	0.35	3	1.05	
Environmental Impacts	15%	2	0.30	3	0.45	3	0.45	3	0.45	
Social Impacts	15%	2	0.30	1	0.15	1	0.15	2	0.30	
Construction Cost	20%	3	0.60	1	0.20	3	0.60	2	0.40	
Operation & Maintenance	15%	3	0.45	2	0.30	2	0.30	2	0.30	
SCORE	100%	12	2.35	8	1.45	10	1.85	12	2.50	

19

StormTrap DoubleTrap Patented Concrete Vault Retention System

Footprint: 90,037 SF

Retention Capacity: 1,350,554.32 CF

Pipe inlets/outlets enter the vault system underground through vault walls.

Foundation designed with high void ratio ABC for groundwater infiltration.

Estimated cost of materials and freight: \$9,000,000

Figure 11: Acknowledgement: StormTrap Stormwater Solutions

StormTrap DoubleTrap Patented Concrete Vault Retention System

Design Aspects:

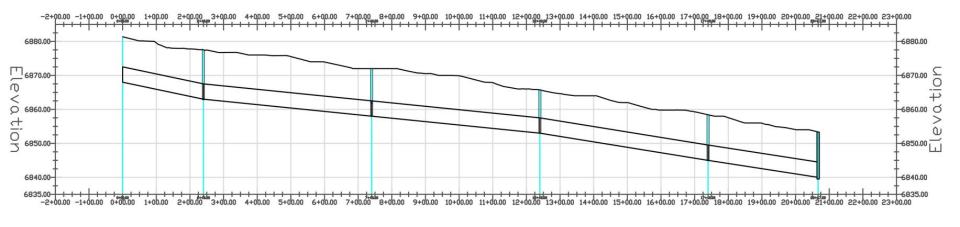

- Reinforced precast concrete
- 15' tall vaults
- Groundwater infiltration openings per Flagstaff requirements.

Figure 12 and Figure 13: Retention Design

Killip Pipe Addition


Station

Station

Figure 14: Profile View of Killip Pipe


- 54" ULTRA FLO[®] Pipe
- Pipe cover, manholes and slopes meet Flagstaff requirements
- Pipe can handle 250 cfs

Design Analysis

Both new designs are maximized for the area.

Table 7: Design Efficiency			100 Year storm	50 year storm	25 year storm
		System Capacity (CF)	Total Flow (cfs)	Total Flow (cfs)	Total Flow (cfs)
Design	% of Watershed Flow		2074	1586	1223
BMX Park	52.35%	1350000	61.91%	83.27%	112.03%
Killip Basin & Pipe	47.65%	1377540	63.65%	83.24%	107.94%

Construction Cost Estimate

Table 8: Underground Detention Basin					
Aspe	Aspect		Unit price	Quantity	Cost (\$\$)
Earthwo	ork:				
	Demo	SF	\$4	17,000	\$68,000
	Excavation	CY	\$10	55,304	\$553,042
	Foundation	CY	\$18	13,339	\$240,099
	Backfill	CY	\$10	17,426	\$174,258
Retention	Tank	LS	\$9,000,000	1	\$9,000,000
Catch basin drains		# of Units	\$2,875	1	\$2,875
BMX park rebuild		SF	\$55	17,000	\$935,000
TOTAL:					\$10,973,274

Construction Cost Estimate

	Table 9: New pipe at killip					
Aspect	Unit	Unit price	Quantity	Cost (\$\$)		
Pipe:						
Inlet	# of Units	\$3,500	1	\$3,500		
54" UltraFlo CMP	LF	\$210	2,067	\$434,070		
Manholes	# of Units	\$10,000	5	\$50,000		
Earthwork:						
Excavation	CY	\$25	9,302	\$232,538		
Backfill (native)	CY	\$5	7,123	\$35,617		
Backfill (ABC)	CY	\$30	961	\$28,818		
	\$784,542					

Construction Cost Estimate

Table 10: Project Cost Analysis		
Earthwork	\$1,264,371	
Technical work	\$10,493,445	
Project TOTAL Cost	\$11,757,816	

Project Cost analysis in terms of dirt work vs technical work.

Full project cost analysis.

Table 11: Project Cost Analysis	
Underground Detention Basin	\$10,973,274
New Pipe @ Killip Elementary	\$784,542
Project TOTAL Cost	\$11,757,816

Environmental Impacts

 Prevention of overland flow
 Increased groundwater infiltration
 Absence of overland flow benefits vegetation

> Potential increased erosion downstream
> Construction induced noise and air pollution

Social Impacts

Less neighborhood flooding
Community designs new BMX Park

- Demolition of BMX Park
 Access limited in alley by construction
- Potential new flooding patterns downstream

Project Impacts

Economical Impacts

- Increased property values
- Reduced flood damage repair costs
- Increased yearly business

- Expensive

- Potential increased flow into Rio De Flag

Thank You For Listening. Any Questions?

Site Research

Table 12: USDA Soil Data

Area Symbol	Soil Type	Percent Slope (%)
3	Baldy Stoney Loam	2-8
8	Paymaster Family Fine Sandy Loam	0-3
11	Collbran Stoney Clay Loam	5-20

Figure 15: USDA Soil Data

Survey & Survey Data Analysis

Survey data was collected to confirm existing as-builts and GIS data



Figure 16: Omar Preparing to Survey

Figure 17: Kolten and Mikael Prepping Base Station

Analysis of Alternatives

Upon further analysis:

- Aquiferous retention design thrown out for plausibility.

- Design replaced with shallow underground retention.

- New design alternative in consideration: Combining underground detention with a new pipe at Killip Elementary.

- Combination will split required capacity between each system.
- Should be more efficient in the limited space for construction.