City of Flagstaff Switzer Wash Regional Drainage Plan CELINE BANNOURAH, KARA COFFEL, GINDIRI PAUL, NOAH TISON CENE 486 FINAL PRESENTATION APRIL 24, 2020

Project Introduction

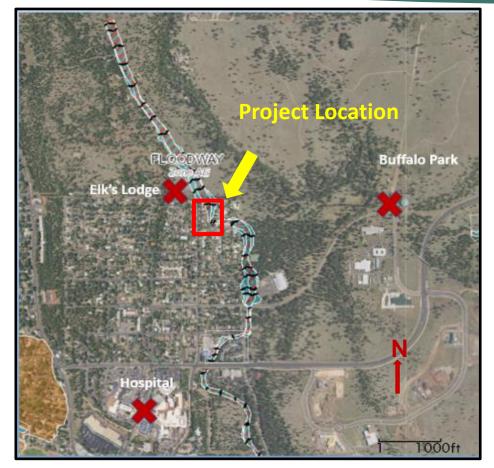


Figure 1: Aerial Map of Project Location and Floodplain [1]

Figure 2: Aerial Map of Project Location and Area of Focus [2]

Project Introduction

Figure 4: North Fir Ave. Flooded

3

Figure 5: North Fir Ave. Flooded Alt.

Task 1: Site Investigation

Performed Site Investigation

Stream Reach Field Inventory Forms

Measure Existing Culverts

Found and Reviewed As-Builts

Elevations/Lengths of Culverts

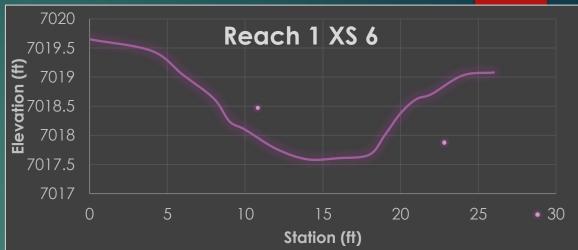
Length/Slope of Channel of Interest

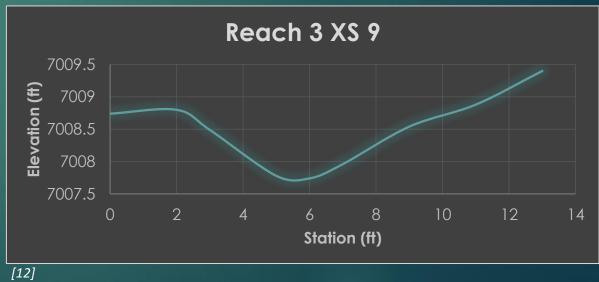
Completed Auto Level Survey

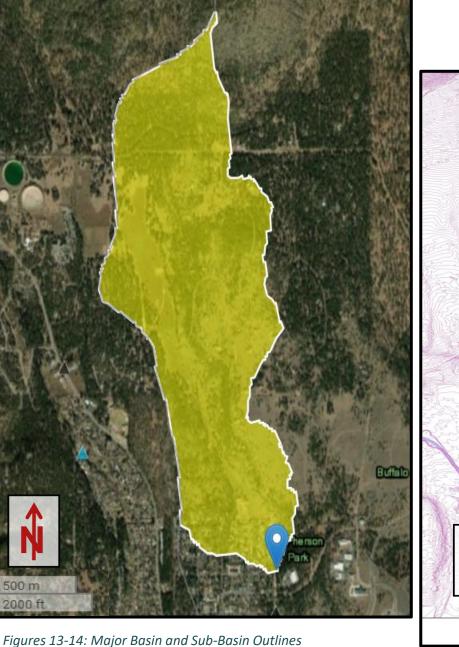
Cross Sections

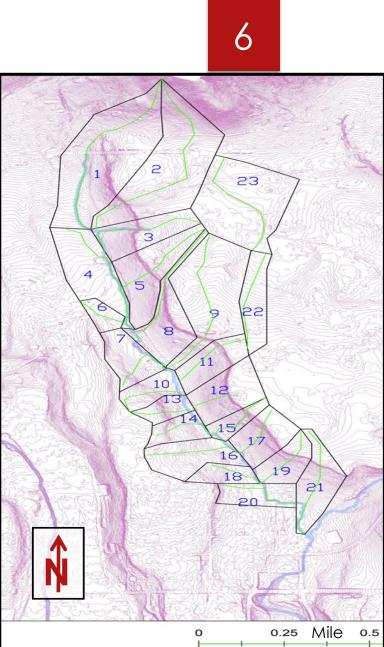
Figure 6: Aerial View of Switzer Canyon Wash with Reaches [1]

Surveying






[11]



Figures 11-12: Switzer Wash Existing CS Reach 1; Reach 3

Figures 7-10: Kara; Gindiri; Noah; Celine

Task 2: Hydrology **Basin Delineation** Major Basin Delineation Sub-Basin Delineation Time of Concentration Flow Routing ► Rainfall Intensities Determine Flow Rate at **Concentration Points** Compare Found Results to FEMA results

Hydrology Results

Methodology followed: Rational Method

Weighted C found using Google Earth/Arc GIS

Area, Weighted C, and Tc were used together to determine Flow Rate Table 1: 100-yr Storm Output

Stream	Location	FEMA [8] Team		Percent Error	
Sireann	LOCUIION	Q100 (cfs)	Q100 (cfs)	%	
Switzer	At confluence with Silver Spruce Ave. Wash	800	829	3.60	

Task 3: Conceptual Stormwater Management Approaches

- Research Approaches for Design
- Compare based on conveyance of 100-year storm event
- Select Final Design Approach

Decision Matrix

Figure 15: vSwitzer Wash with Channel Reaches [1]

Natural Channel

- Adding Missing 275 Feet (GREEN LINE)
- Modifying (Enlarging) Channel to Convey 100-yr flow
- Revegetating Reaches 1, 2, and 4

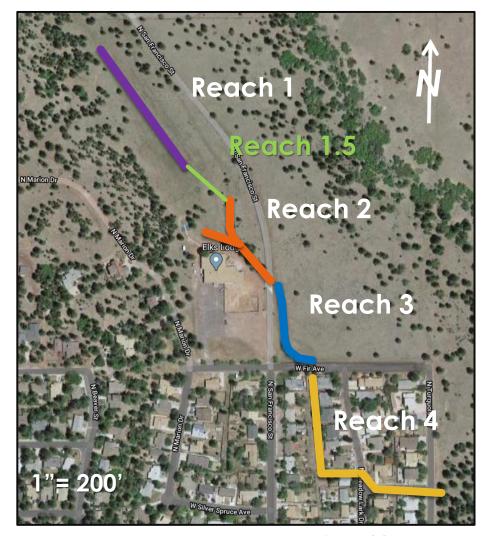


Figure 16: Switzer Wash with Natural Channel Modification [1]

Natural Channel/Culvert Bypass

- Includes 1st Natural Channel Modification
- Channel Bypass

Connect to Downstream Culvert

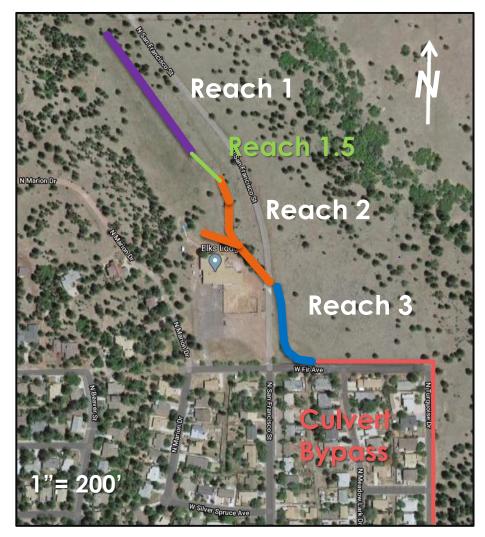


Figure 17: Switzer Wash with Natural Channel and Channel Bypass [1]

Detention/LID Basin and Extended Detention Basin

- Detention Basin north of Elk's Lodge
- Existing small pond
- Forebay: Maximum 4 acres
- Micro-Pool: Maximum 4 acres

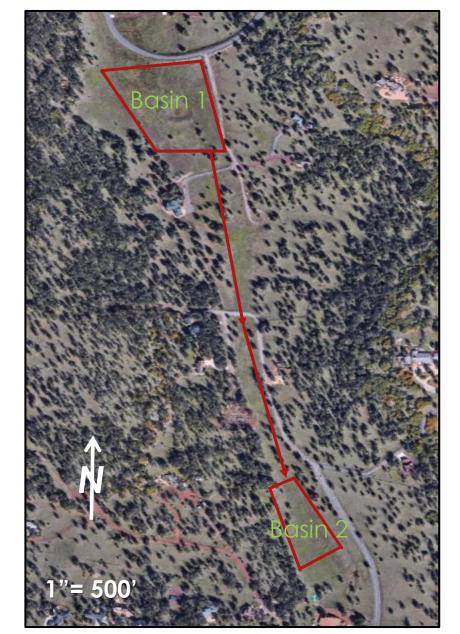


Figure 18: Switzer Wash with Detention Basins [1]

12

Wetlands

- Located above Elk's Lodge
- Original thought: Approx. 4 Acres
 Extend further North of area

Figure 19: Switzer Wash with Wetland [1]

Upper Basin and Natural Channel

- Upper Detention Basin located at small pond
 - Privately owned land
- Natural Channel Modification from 1st Alternative
 - Detention Basin will decrease incoming flow to channel

Figure 20: Switzer Wash with Upper Basin and Natural Channel [1]

Selection of Final Alternative

14

Table 2: Decision Matrix

	Cost	Benefit		ental/Social pact		ОМ	Area Ne	eeded	Ар	peal	Total
Weight	0.2	Score	0.2	Score	0.2	Score	0.2	Score	0.2	Score	
Natural Channel	2	0.4	4	0.8	5]	3	0.6	3	0.6	3.4
Natural Channel/culvert bypass	4	0.8	3	0.6	4	0.8	4	0.8	4	0.8	3.8
Extended Basins	1.5	0.3	2	0.4		0.4	1	0.2	2	0.4	
Detention Basin/LID basin	2	0.4	3	0.6	2	0.4	1	0.2	3		2.2
Wetlands	1	0.2	4	0.8	1	0.2	2	0.4	2	0.4	2
Upper Basin+ Natural Channel	4	0.8	3	0.6	3	0.6	3	0.6	4	0.8	3.4
WLB basin	3	0.6	2	0.4	3	0.6	3	0.6	0	0	2.2

Scoring Scale: 1 to 5

Task 4: Hydraulics

- Existing Open Channel Modeling
 - ► HEC-RAS
 - Cross Sections
 - Culvert Under Road
 - Compare 100-yr, 50-yr, 25-yr, and 10-yr flows
- Proposed Design Hydraulics
 - Channel Design
 - Culvert Design
 - Construction Costs

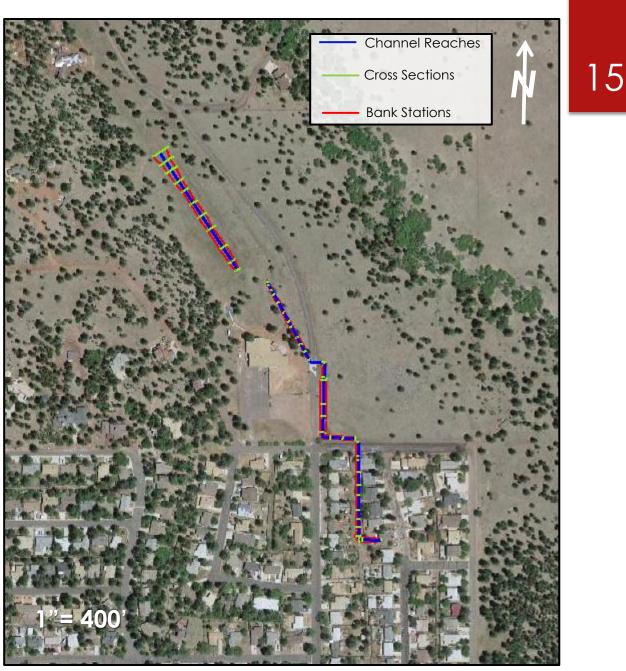
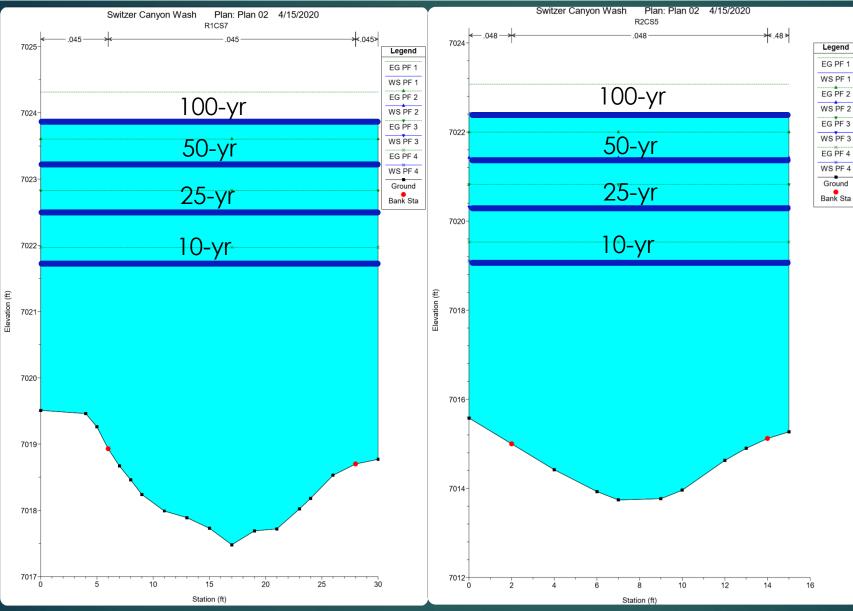



Figure 21: Switzer Wash HEC-RAS Channel

EG PF 3 WS PF 3 EG PF 4 Example HEC-RAS WS PF 4 Ground Cross Sections Bank Sta Profile 1 = 100-yr Profile 2 = 50-yr Profile 3 = 25-yr Profile 4 = 10-yr

16

Figure 22: Switzer Wash HEC-RAS Existing CS Reach 1

Figure 23: Switzer Wash HEC-RAS Existing CS Reach 2

17

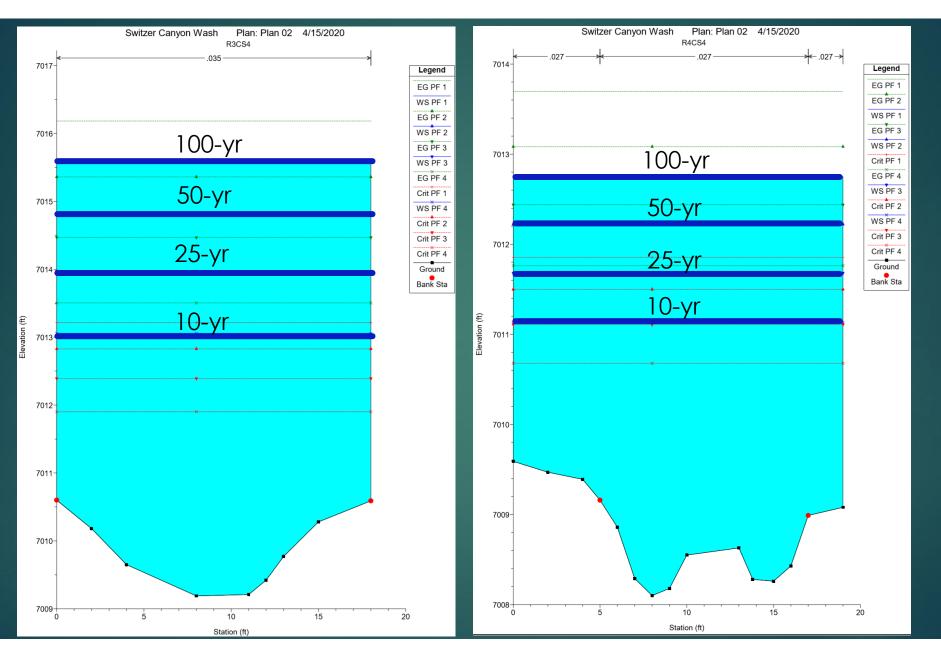


Figure 24: Switzer Wash HEC-RAS Existing CS Reach 3

Figure 25: Switzer Wash HEC-RAS Existing CS Reach 4

18

Channel Design Criteria

CITY OF FLAGSTAFF STANDARDS:

- TRAPEZOIDAL SHAPE REQUIRED FOR PUBLIC OPEN CHANNELS
- MUST BE DESIGNED FOR SUBCRITICAL FLOW
- ► CHANNEL SLOPE $\geq 0.5\%$
- SIDE SLOPE NO STEEPER THAN 2:1

Channel Hydraulic Model and Dimensions

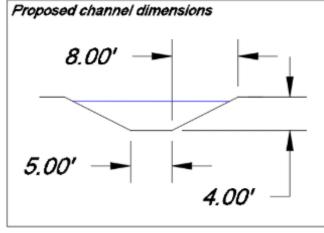
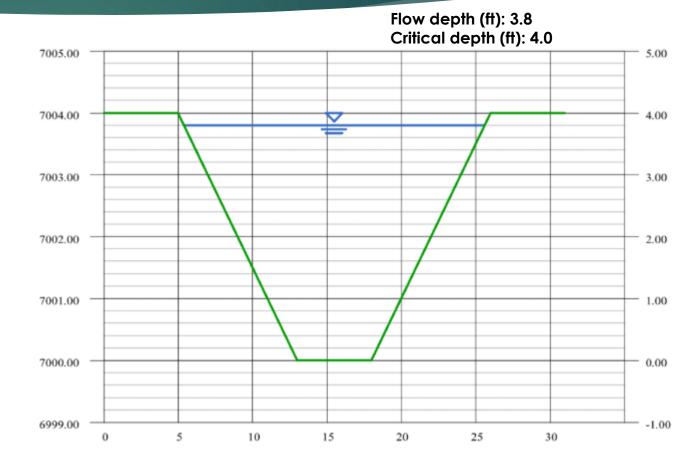



Figure 26: Switzer Wash Proposed Channel Dimensions

Table 3: Switzer Wash Proposed Channel Specs

Full flow rate (cfs):	1,028
Average channel slope (%):	0.72
Side slopes:	2:1
Roughness coefficient:	0.013
Top width (ft):	21

19

Figure 27: Switzer Wash Proposed Channel CS

Proposed Channel Cross-Sections

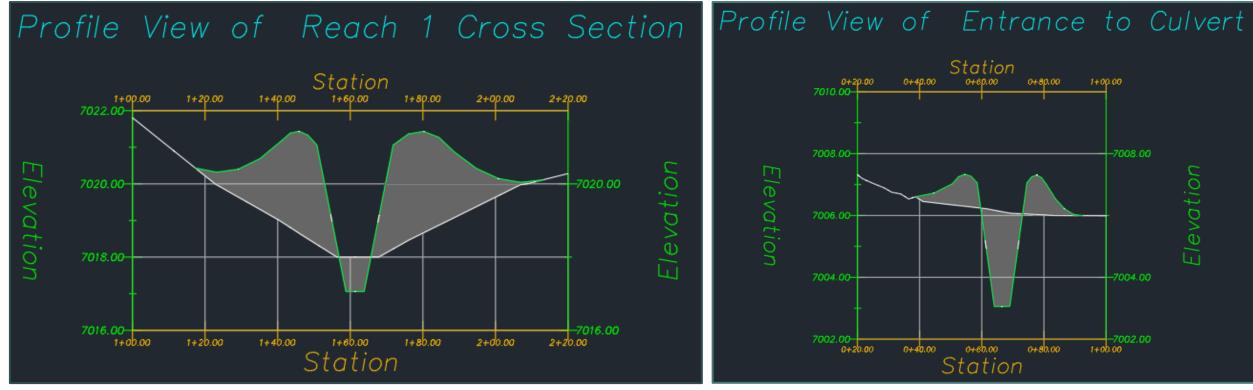
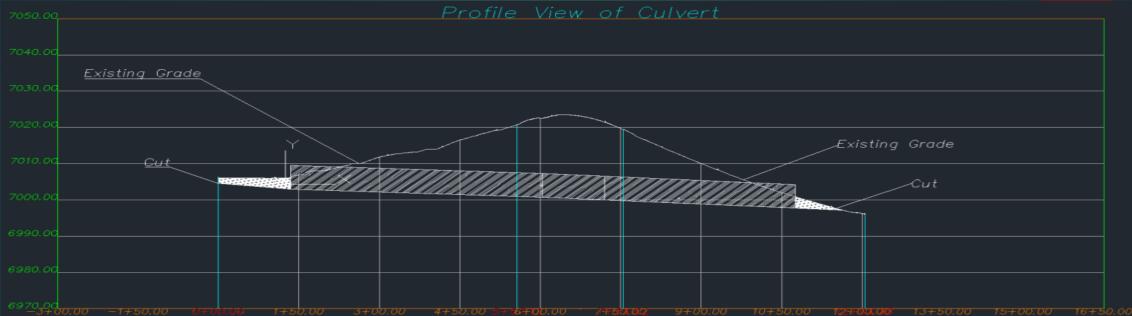


Figure 28: Example Cross-Section from Reach 1

Figure 29: Example Cross-Section at the Culvert Entrance

Proposed Double Barrel Culvert

Figure 30: Switzer Wash Proposed Culvert Location


Two 96 inch Precast Circular Concrete Pipes

- Length of each pipe: 924 feet
- ▶ Two bends in pipe: 30 degree, 60 degree
- 4 manholes placed at bends
- 24 ft of cover need at deepest point

Figure 31: Proposed Culvert Example [8]

Model Results for Culvert

Table 4: Culvert Results for 100-yr Flow

Culvert Results for 100-year Flow			
Flow Rate	800 cfs		
Up Velocity	11.88 ft/s		
Dn Velocity	9 ft/s		
Slope	0.78%		
n	0.012		
Control type	Inlet		

Inlet Protection

45-degree Concrete Wing Walls

22

Figure 32: Double Barrel Culvert Profile

- ► Steel Grate
- 2' Dumped Rip-Rap Apron
- Outlet Protection
 - 57' Long Dumped Rip-Rap Apron

Natural Channel Construction Costs

A	dditional Cost per 1000 ft		Channel Earth Work Cost			
Equipment/Personnel	Hotly Rates/One Time Rate	Hours Needed	Dettern Width	Tor Width	Longth	Height
Bulldozer	37.5	350	Bottom Width	Top Width	Length	Height
Workers (8)	60	450	5	20	3000	5
Mobilization Fees	5000	0	Volume ft [^] 3	Cubic yards of dirt	\$ per Cubic Yard	
Inspection Fees	5000	0	187500	6944	2	
Compaction Machine	25	350	107500	0,11	2	
Compaction Tests	2000	0	Total Cost	\$ 13,888.89		
Total Cost	\$	249,875.00	Additional Cost	\$ 749,625.00		

Table 5: Natural Channel Equipment Costs

Table 6: Natural Channel Earth Work Costs

24

.....

Culvert Construction Costs

Cost of Culvert Materials					
Material	Unit Cost per ft/per part	# of Units			
96" Round Reinforced Concrete Pipe Class 3	2000	1848			
96" Manhole-Rubber Joint	435	4			
96" Integral Base	624	4			
96" x 1'-5' to 48" MH Reducer	1270	4			
96" x 8 Manhole Base	365	4			
Wing Wall	4000	1			
Riprap	50	100			
Total Cost	\$ 3,7	15,776.00			

Cost of Culvert Earth Work							
Deep (ft)	Wide (ft)	Length (ft)					
24	20	924					
Volume	Cubic yards of Dirt	\$ per Cubic Yard					
443520	16427	2					
Total Cost	\$	32,853.33					

Table 8: Culvert Earth Work Costs

 $\mathbf{\alpha}$

001

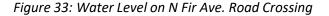

Totals				
Total Cost of Construction Project	\$ 4,762,018.22			
Cubic Yards of Earth	23371.00			

Table 9: Total Culvert Construction Costs

Table 7: Culvert Material Costs

Task 5: Social Impacts

Temporary construction congestion.
Reduced flood risk.
Full road access during major storms.
Reduced property damage.

Task 5: Environmental Impacts Increase in sediment deposit downstream. Temporary vegetation loss. Wildlife access increases. Minimal landscape change.

Task 5: Economic Impacts

Road life expansion. Flood insurance reduction. Residence permanency. COF FEMA credits.

Figure 35: Neighborhood Channel Flow During Storm Event

Works Cited

- [1] Google Maps, Google, Flagstaff, AZ, 2019. [Online]. [Accessed: 1-Feb-2020]
- [2] "Switzer Canyon Floodplain", FEMA, 2019. [Online] [Accessed: 3-Feb-2020]
- [3] City of Flagstaff Stormwater Management Design Manual", COF,2009.[Online]. <u>https://www.flagstaff.az.gov/DocumentCenter/View/58133/SWMgmtDesignManual-3-09?bidId=</u>
- ▶ [4] "Meadow Lark Dr. Storm Sewer Channel Relocation", Yancey Construction Copany, 1977.

- ▶ [5] "City of Flagstaff, Arizona Switzer Canyon Water Transmission Main Phase 2"COF,2016.
- [6] "Stream Stats," USGS,2016. [Online]. Available: <u>https://streamstats.usgs.gov/ss/</u>. [Accessed: 6-Feb-2020].
- ▶ [7] "COF Map AcrGIS", COF. [Online] [Accessed: 3-Feb-2020].
- [8] <u>https://www.mooreengineeringinc.com/our-work/1048/city-west-fargo/</u>

Thank You ANY QUESTIONS?