

Alternative Septic System Update 4

Presenter: Will Richardson Team Members: Carly Akine, Dylan Norfleet, Abdullah Alkandari

Project Background

- Located at 1955 North Echo Canyon Rd. Page Springs, AZ
- Alternative septic system design selection
- Irrigation design for vineyard
- Water quality analysis of well water
- 1-ft topographic map of property

Figure 1: Site Location, provided by Google Maps

Schedule

Table 1: Team Schedule

Task No.	Task	Start Date	End Date
2.0	Off-site Technical Analysis	<mark>1/29/18</mark>	<mark>2/4/18</mark>
<mark>3.0</mark>	Alternative Septic System Design Evaluation	<mark>2/5/18</mark>	<mark>3/25/18</mark>
<mark>4.0</mark>	Irrigation System Design Evaluation	<mark>2/5/18</mark>	3/25/18
<mark>5.0</mark>	System Design	<mark>3/26/18</mark>	<mark>4/22/18</mark>
<mark>5.1</mark>	Septic System Design	<mark>3/26/18</mark>	4/22/18
<mark>5.2</mark>	Irrigation System Design	<mark>3/26/18</mark>	<mark>4/22/18</mark>

Water Quality Analysis

- Three samples tested from each source location.
- Samples were tested against two independently prepared blanks.
- Sample 1 & 2 used to measure average results.

Average Total Nitrogen:

- Well: 0.325 mg/L
- Tap: 0.675 mg/L

	Source	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)
Blank 1	Well	0.4	0.3	-0.6
	Тар	0.6	0.8	1.6
Blank 2	Well	0.3	0.3	-0.5
Diank 2	Тар	0.6	0.7	1.6

Table 2: Total Nitrogen Results

Method: HACH #10071

Septic System Design

System Requirements:

- 1000 gal system
- Effluent TSS = 30 mg/L
- Effluent BOD = 30 mg/L
- Effluent Total N = 53 mg/L
- Effluent Coliform = 300,000 colonies/100 mL

Figure 1: Aerobic Septic System [1]

Figure 2: Sequencing Batch Reactor [2]

Septic System Design

Location of Current System

Location of proposed Leach Field

- Percolation Rate = 1.58 min/in
- Soil Absorption Rate = 0.93 gpd/ft²
- According to R18-9-A312 of Arizona Administrative Code an Adjusted Soil Absorption Rate (SAR_a) will need to be found

$$SAR_a = \left[\left(\frac{11.39}{\sqrt[3]{TSS + BOD_5}} - 1.87 \right) SAR^{1.13} + 1 \right] SAR$$

Irrigation System Design Drip Irrigation

- ¹⁄₄" Polyethylene Dripline Tubing
- Operating Pressure 10 30 psi [3]
- Row length can be no longer than 150 ft
- Pressure loss for a length of 150 ft = 17.4 psi [4]

Figure 4: Drip Irrigation [5]

Irrigation System Design Submersible Pump

Pump Specifications

- Static Head = 63 ft
- Liquid Depth = 8 ft
- Discharge Length = 500 ft
- 3" schedule 40 PVC piping
- Flow of 53 GPM
- Calculated Total Head = 65.4 ft
- Total head is calculated using PumpFlo Application

Selected Pump [6]

- Gorman-Rupp Model S2A1
- 2" Inlet/Outlet
- 4.25" diameter
- 115 V

Figure 5: Gorman-Rupp Model S2A1 [6]

References

- [1] "Integrated Environment, Inc Oklahoma Septic System Service, Pumping, and Aerobic," [Online]. Available: http://www.oklahomasepticsystem.com/index.cfm?page=aerobic. [Accessed 27 March 2018].
- [2] "Residential Wastewater Treatment System," OnSyte Performance, [Online]. Available: http://onsyte.com/residential-wastewater-treatment-system/. [Accessed 15 April 2018].
- [3] D. F. Zoldoske, "Selecting a Drip Irrigation System for Vineyards," Center for Irrigation Technology, 1998.
- [4] "Pressure Loss Calculator," DripDepot, [Online]. Available: https://www.dripdepot.com/irrigationcalculators/pressure-loss-calculator. [Accessed 15 April 2018].
- [5] "Drip Irrigation System," [Online]. Available: https://www.indiamart.com/proddetail/drip-irrigationsystem-15099502830.html. [Accessed 15 April 2018].
- [6] "S Series (Widebase Submersible)," Gorman-Rupp, [Online]. Available: https://www.grpumps.com/product/pump/S-Series-Widebase-Submersible. [Accessed 15 April 2018].
- [7] "Gorman Rupp Application Selection Program," Gorman Rupp, [Online]. Available: http://gormanrupp.pump-flo.com/app/pump.aspx?sid=gormanrupp&CATID=622&SELID=2987936&PSID=38089064. [Accessed 15 April 2018].

Questions?