NORTHERN ARIZONA UNIVERSITY

ASCE STEEL BRIDGE TEAM

PROJECT DESCRIPTION

Accelerate Bridge Construction methods

• Replace a bridge that currently spans a large river

• Develop a 1:10 scale model that will demonstrate the concepts presented by our company and erect this under replicated conditions

• Design will be constructed at the American Society of Civil Engineers (ASCE) Pacific South West Conference (PSWC)

BACKGROUND

• Bridges are built to address specific rules and criteria

• Overall structure must fit into a crosssection and profile envelope

 Along with design criteria, scoring categories also considered when designing

ALTERNATIVES - TRUSS TYPES

Baltimore

Howe

Double Warren

Pratt

TRUSS DECISION MATRIX

	Weight	<u>Pratt</u>	Howe	Warren	Baltimore
Lightness	2	<u>3 (6)</u>	3 (6)	2 (4)	1 (2)
Deflection	3	<u>2 (6)</u>	2 (6)	3 (9)	1 (3)
Aesthetics	1	<u>2 (2)</u>	2 (2)	3 (3)	5 (5)
Time	3	<u>2 (6)</u>	2 (6)	2 (6)	1 (3)
Strength	2	<u>3 (6)</u>	2 (4)	1 (2)	1 (2)
<u>Total</u>		<u>26</u>	24	24	15

ALTERNATIVES – STEEL SHAPES

Angle Iron

Cold Formed Shapes

Hallow Structural Section

CONNECTION DESIGN

MATERIAL TESTING

- Testing of the material was done to confirm the material that was donated to us
- Tried to implement Brinell Hardness Test
- Ultimately the tests failed because of the shape of the material

RISA ANALYSIS

- 2D and 3D Analysis
- Joint Deflection
- Compressive and Tension Stress

MATERIAL ANALYSIS

Check	Allowable	Actual	Conclusion
Compression Capacity	2.65 kip	1.4 kip	GOOD!
Yield Limit State	4.65 kip	4.61 kip	GOOD!
Fracture Limit State	3.4 kip	2.4 kip	GOOD!
Plate Tear Out	4.9 kip	4.61 kip	GOOD!
Shear Strength	2.23kip	0.7 kip	GOOD!

The analysis was done by using the AISC Steel Construction Manual 14th edition.

FINAL DESIGN

Bolts & Nuts Grade

Rail and Span Members

FINAL DESIGN

Connection Design

Support Column

FINAL DESIGN

Angle Iron Cross Bracing

Plan View

COST ANALYSIS

Donated Material

HSS Tubing lxlx1/8 (500 ft)	\$500
1/8" Plates (2-1/8" long) (300)	\$300
Welding Labor (18 Hours)	\$1600
Bridge Sign	\$70
Angle Iron	\$70
Nuts & Bolts (350 Ea.)	\$60
Total	\$2600

Non-Donated Material

\$150
\$115
\$265

PROJECT HOURS

- Design Hours
 - AutoCAD/Solid Works 100
 - RISA 120
 - Hand Calculations 15
 - Brainstorming/Decision Matrix 240
- <u>Total = 475 hours</u>
- Labor Hours
 - Team Members 1000
 - Mentees 300
- <u>Total = 1300 hours</u>

IMPACTS

Social

- Compete vs. other universities
- Offer design ideas to the future
- Work face to face with companies

Economical

• Paved the way for future students

COMPETITION PIC

DESIGN CATEGORIES

<u>Display</u> ~ <u>Lightness</u> ~ <u>Deflection</u> ~ <u>Construction Speed</u>

Construction Economy: (Cc)

= Time(minutes) x Build team members(persons) x \$50,000(\$/person-minute) + load test penalties(\$)

Structural Efficiency: (Cs)

=Weight(squared) x \$50(\$/pound(squared)) x deflection(inches) x \$1,000,000(\$/inch) + load test penalties(\$)

Overall Performance: Cc + Cs

RESULTS

- All bridges were loaded with
- Of 18 Schools, 13 bridges could no OVALIFIED capacitate the load
 DIS OVALIFIED
- All DQ's resulted from deflection v Sualifier or catastrophic failure.
- Maximum deflection = 1.83 in.
- Construction time = 27m 38s
- 38 Violations

ACKNOWLEDGEMENTS

CONCLUSIONS

- Third in Display
- Third in Construction Economy
- 5th overall

